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Abstract— The mathematical equations describing transient heat transfer between the fluid flowing through
a fixed bed of packing are formulated for the situations where (1) there is resistance to heat transfer within
the solid phase and (2) there is thermal conduction in the solid phase along the direction of fluid flow.
Numerical analysis is presented for a computer solution of these equations and a parametric investigation
of the models is used to show that the values of certain dimensionless groups arising from the mathematical
formulation may be used to define the range of conditions under which the alternative heat-transfer
mechanisms are important. Experimental observations of time temperature breakthrough profiles subse-
quent to a step change in the inlet fluid temperature have been compared with the theoretically predicted
profiles in order to check the validity of the mathematical models. Critical values of the dimensionless
groups defining the limiting range of applicability of the various models are presented.

NOMENCLATURE l distance from the bed entrance [ft];
— 2.
A, surface area per unit bed volume M,  constant, =K,Az/3(As)"; .
(/1) (=301 — p/Blor spheres; M 825 throughput per bed cross-section
; ’ Ib/hft*];
B,  sphere radius [ft]; : 3.
C,,  gas specific heat [ Btu/Ib°F]; M., bed density [Ib/ft ].’
C.  solid specific heat [Btu/Ib°F]; m, num_ber of a radial steps from the
F, fractional internal solid temperature; particle centre; .
F fractional gas temperature: N,  total number of steps in the bed length ;
g b —_— .
F,, fractional outlet gas temperature; Ny, soakage numbg T, = UC“B/.k”
F, fractional solid temperature; n, pumber of a time steps since the step
hs,  heat-transfer coefficient per unit sur- Lnli)(liltf’r tion:
face area [Btu/hft*°F]; b oid fraction,;
i the number of a length steps from the r, distance from the centre of the sphere
bed entrance; (Ef.t]’ ionl dius. =7/B:
K,, dimensionless conduction parameter, 5 1mension’ess radius, =7/ e
—k /h,B: T, temperature within a particle [°F];
k, total number of steps across a radius, 2 gas temperature [°F]; o
—1/As; T,;, inlet gas temperature [°F];
k., solid thermal conductivity Toor ou'Flet gas temperature [°F];
¢ [Btu/hft2(F/f]; T,  solid temperature [ °F] (surface);
L bed length [ft]; ’ T, initial solid temperature [°F];
’ ’ L time since the introduction of the step

t Present address: Union Carbide Ltd., Charleston, Change’ _[h]; )
West Virginia, U.S.A. superficial gas velocity [ft/h];
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v, interstitial gas velocity [ft/h];
Y, dimensionless bed length parameter,
hAL/M,C,;
Vs dimensionless bed length, H,Al/M ,C,;
Z, dimensionless time parameter,
hA(t — LM C,;
z, dimensionless time, hjt — l/u)M,C;;

As,  grid radial increment ;
Ay,  grid length increment;
Az, grid time increment;

ps  solid density [1b/ft*];

cross-sectional area of packing per
cross-section of bed [ft?/ft?];

e, constant, (2 — YAp)/(2 + YAy);

jA constant, YAy/(2 + YAy);

K,, dimensionless flux conduction para-
meter, = k/h,L;
K,;, dimensionless longitudinal conduction

parameter, = k. A/M,C,L;
x,  constant $K;Ay/Y(Ay)?;
Small square brackets contain the grid
coordinates of the preceding tempera-
ture point F,, F.

INTRODUCTION

THE SCHUMANN model [1] comprising a pair
of coupled hyperbolic partial differential equa-
tions has been applied in many instances
[2-10] to determine the heat transfer coefficient
for a gas flowing through a fixed bed. This model,
however, assumes that the thermal conductivity
of the packing material does not affect the heat
transfer although in many cases this is not so.
This present work arose out of the need to check
that heat-transfer coefficients derived [10] by
use of the Schumann model were free of the
effect of the packing thermal conductivity.

Mathematical models [11-17] have been
proposed for the inclusion of the packing
conductivity, and analytical solutions derived
[13, 18, 19], although their use is cumbersome.
Numerical solutions may be handled more
easily provided the solution has been shown to
be valid. This may be achieved by comparison
with the analytical solution or by comparison
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with the simple solution (Schumann model)
when the effect of conductivity is allowed to
become small.

The models presented here are solved numeri-
cally for the particular case of a fluid flowing in
one direction through a fixed bed so as to
calculate the breakthrough temperature profile
when the inlet fluid temperature is subjected to
a step change. Analysis of the shape of the
breakthrough temperature profile can be used
to calculate the convective heat-transfer co-
efficient at the packing surface.

The same models with different boundary
conditions may be used to describe the operation
of a pair of reversing thermal regenerators [20-
22]. Hausen [23] and Butterfield [24] have
shown that for this particular case the point
temperatures in the solid packing vary almost
linearly with time throughout the flow cycle and
an overall (lumped) heat-transfer coefficient in-
corporating the thermal resistance of the packing
may be employed in the analytical solution of
the Schumann model to calculate the thermal
efficiency and temperature distributions.

Razelos and Lazaridis [40] have presented
computed values of correction factors which can
be used to obtain lumped heat-transfer coeffi-
cients from convective film coefficients for
subsequent use in the Schumann model as
applied to a simple thermal regenerator with
hollow cylindrical packing geometry. This ap-
proach may, however, be inadequate when
additional complications such as varying
physical properties, heat-transfer coefficients
and heat sources are present.

Willmott [25] has presented computer solu-
tions for the Schumann model with boundary
conditions simulating a pair of reversing thermal
regenerators and these may be extended to
allow for the temperature variation of physical
properties and heat-transfer coefficient within
the packing. Solutions of the same problem
using electrical resistance analogues have been
used by Hlinka [26] and Razelos [27] to investi-
gate the design and performance of blast
furnace regenerator stoves.
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THE SIMPLE OR SCHUMANN MODEL

This model has received much attention in
the literature [2, 4, 6, 9, 10] and thus will be
dealt with briefly here. The equations describing
this model when put in dimensionless form are
as follows,

and
OF,/0z = + (F, — F)). )

The following simplifying assumptions being
taken:

(a) The thermal constants of the system are
independent of temperature.

(b) There is no radial heat transfer.

(c) The fluid is in plug flow.

(d) Axial conduction in either the fluid phase or
the solid phase is negligible.

(e) The fluid velocity does not vary along the
bed.

(f) There is no thermal gradient within the
particles.

Numerical solutions for this model have been
derived and shown to be stable and convergent
for a variety of initial and boundary conditions
[9, 10, 14, 25, 28]. However the computing time
for obtaining a solution depends upon the
numerical method. The central difference scheme
proposed by Price [9] which is identical to the
trapezoidal approximation proposed by
Willmott [25], would appear to be the superior
one. In this case, integration step sizes of 0-3
guarantee accuracy to three decimal places.
The Price solution was used as a comparison
for the solutions obtained later which include
the effects of packing conductivity.

INTRAPARTICLE CONDUCTION EFFECTS

For packed beds containing particles of low
thermal conductivity material, e.g. glass and
ceramics, assumption (f) of the simple model is
invalid under certain conditions in which case
allowance must be made for thermal gradients

within the particles, i.e. intraparticle conduction
effects.

A heat balance across an element of the bed,
as shown in Fig. 1, for the fluid phase gives

M,C, 8T,/al + (M,C,/u) 0T,/ot

= —hA(T, - T). (3)
(‘
— T, S T (L) ———
T o Too
l 8¢

Fi1G. 1. Model of the packed bed.

The thermal behaviour for each particle, see
Fig. 2 (assumed to be spheres of radius B), is
described by

p.C.0T/ot = k(O*T/or* + /) 0T/or).  (4)

(3

T (N = T{(8,1) Porticle surface temperature
T Gnt Particle internal temperature

FiG. 2. Individual spherical particle.

The equations (3) and (4) are coupled by the
heat balance at the gas-solid interface,

- s(aT/ar)r=B = hd(T; - TB) (5)

and the system is completed by the symmetry
condition

(@T/or),=0 = 0. (6)

The initial and boundary conditions, repre-
senting a step change in the gas inlet temperature
are

L=T,
and
T=Ts=7;i

for I=0 and t>0, )]

for t=0, B=r>=0
and L>212>20. ®)

The equations (3) through to (8) are made
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dimensionless by transforming the independent
variables [, t and r using the following substitu-
tions.

y = hAUM,C,, ©)
z=(t — 1/u) hA/M,C,, (10)
s=r/B (11)
and
K, = ky/h;B, (12)
and introducing the normalized temperatures
F=(T - TH)T; — T, (13)
Fo=(T, — TT; — T3) (14)
and
F, =(T; — T)T; — Tyy. (15)

Thus the following equations describe the
intraparticle conduction model for transient

NUMERICAL SOLUTION OF THE
INTRAPARTICLE CONDUCTION MODEL
The packed bed is now represented by a three
dimensional grid as shown in Fig. 3.
The equation (16) is approximated by central
difference formula giving

Fn+1,i] - FJ[n+1,i—1]
Ay
= —HF[n+ 1]+ F[n+1,i-1]
— Fn+ Li] - Fn+ 1,i — 1]) + 0(Ay?)
(22
where the symbols inside the square brackets
indicate the coordinates on the computational

grid of the gas and solid temperatures F, and
F,

The equation (17) is represented by the Crank—
Nicholson 6-point implicit form [29], resulting
in

F[n+ 1,im] — F[n,i,m]=
Az

K, |0+ 1/mF[n+ Lim+1]—=2F[n+ 1,im]+ (1 - 1mPF[n+ 1,im— 1]
6As*< + (1 + 1/m) F[n,i,m + 1] — 2F[n,i,m] + (1 — 1/m) F[n,i,m — 1]

(23)

+ O(Az) + O(As)>.

heat transfer between fluid and solid in a fixed
bed.

OF, /0y = —(F, — F), (16)
0F/0z = (K,/3)\0*F/0s* + (2/s)0F /0s), (17)
—K[(0F/0s)s=y = +(F, — Fy) (18)

and
(0F/0s)s=0 = 0, (19)

with the following initial and boundary con-
ditions,

F,=1 at y=0 and z20 (20)
and
F=F =0 at z=0,12520
and Y>=2y=0. (21)

The equation (18) for the gas-solid interface
is approximated by central difference formula
by assuming the existence of a temperature at a

u
\\&

, G"b' N’\ A'I
A , N
) 8‘57:/’,6’73\ s Ay-

Do, Wiry, .
A /o iy

Grid positions along the
dimensionless time axis

3
o

izn=0) == —————
[m=k Grid positions along the
bed length

FiG. 3. Numerical grid representation of the bed.



THERMAL CONDUCTIVITY ON

distance As from the solid surface, position
(k + 1),

(F[p,i,k + 1] — Flp,i,k — 1]
- K,
2As

= F,[p.i] = FJlp,i] + 0(As?)

wherep =n,n + 1.

The truncation error in equation (24) matches
that used in equation (23). The hypothetical
temperatures obtained when m = k in equation
(23) may be eliminated by using equation (24)
thus giving the following equation;

(24)

F[n + Li,k] — F[n,i, k]

= M(F[n+ 1,i,k— 1] —F[n+ 1,i,k]

+ F[n,i,k — 1] — F[n,i, k]

+ As(1 + 1/k)/K[(F,[n + 1,i]

— F[n + L,i,k] + F [n,i] — Fn,i,k])) (25)

M = K, Az/3As%.

At the centre of the particle,m = 0,8F/ds = 0,
and the indeterminate term (2/s) dF/0s has the
limit 20%F/ds* at s = 0, so that equation (17)
becomes,

0F/0z = K,0*F/os* (26)

The Crank-Nicholson representation of equa-
tion (26), and the condition of symmetry give the
following equation

at s=0.

F[n + 1,i,0] — F[n,i,0]
= 3M(F[n + 1,i,1] — F[n + 1,5,0]
+ F[n,i, 1] — F[n,i,0]). 27

The (k + 2) algebraic equations (22), (23), (25)
and (27) describe the intraparticle conduction
model by finite difference approximation and
at the (n + 1,i) step point there will be (k + 2)
unknown temperatures, F,[n+ 1,i] and
F[n + 1,i,m = 0 > k], provided the gas and
solid temperatures at the (n,i) point, and the
gas temperature at the (n + 1, i — 1) point are
known.

The starting values for the solution are ob-
tained from the initial and boundary conditions,
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which in their finite-difference form are as
follows:

Fjni]l=1 at i=0 and n > 0. (28)
F[nim}=0 at n=0k>m2>=0
and n=2i=0 (29)
and
F{n,i] = F[n,i,k]. (30)

The resulting set of algebraic equations (22),
(23), (25) and (27) are represented for con-
venience in the matrix form by A%(n + 1) = B(n),
for a given length position, i, where A is a
(k + 2) x (k + 2) tridiagonal matrix, X(n + 1)
is a (k + 2) column vector of the unknown
temperatures and B(n) is a (k + 2) column
vector of the known temperatures. The com-
ponents of A, x(n + 1) and Bn) are shown in
Appendix 1, and the solution is merely the
inversionX(n + 1) = B(n) A~!,whichisachieved
by a Gauss elimination and substitution pro-
cedure (41), on the tridiagonal matrix.

Stability and Convergence of the Numerical
Solution of the Intraparticle Conduction Model
The stability of the hyperbolic and parabolic
partial differential equations are known but
the manner of coupling these two equations by
the flux boundary condition at the particle
surface may seriously affect the overall stabilfty
of the numerical analysis. Parker and Crank
[30] Albasiny [31] and Keast and Mitchell [32]
have discussed the stability of the Crank-
Nicholson formula for various parabolic partial
differential equations and boundary conditions,
and found that persistent discretization errors
may occur in the solution. These errors are
dependent upon the increment size used in the
approximation of the parabolic equation.
The numerical analysis was initially checked
for stability at the zero length condition where
the system is in fact the following

O*F 2\ oF
K [‘e‘* * () ‘a:]

oF _
oz

(1)
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Table 1. Stability of the zero length condition

z=01 20 F, = 0999
Az As F, F, Steps F,

K, = 100 001 020 009659 0-86440 693 0-99901

0-05 0-20 0-09511 0-86420 139 0-99905

010 0-20 0-09875 0-86365 69 099930

010 0-10 009870 086352 69 099950

010 0-05 009880 0-86349 69 099958

0-20 0-20 069813 0-86367 35 0-99926

K, =10 001 020 0-20179 0-84387 870 0-99937

005 020 0-20453 0-84391 174 099937

010 020 022435 0-84402 87 0:99937

010 010 0-24660 0-84372 87 099937

010 005 0-25536 0-84085 87 099938

0-20 020 0-64813 0-84433 44 0-99943

K, =01 001 020 030626 0-86740 2875 099990

005 0-20 030776 0-86741 575 0-99990

010 020 031267 0-86745 288 099990

010 0-10 044365 0-86285 284 0-99990

010 005 0-53995 0-86182 283 0-99990

020 020 0-79603 0-86760 144 0-99990
and with the infinite integral solution derived by
AF Rosen [18, 19] for the analogous case of solid
K3 ) =F-F (32) diffusion in packed beds. He tabulated values

s=1

with Fy = 1forz>0and F;=F=0atz=0
and 1 > s > 0. Table (1) shows the values of
F, the particle surface temperature for z = 01
and 20, the number of time steps required for
the value of F, to reach 0-999 and the value at
that time for Az = 001, 0-05, (-1, 0-2 and for
As = 02, 0:1, 0-05. Decreasing the size of Az
the time step only affects the value of F, at very
small values of z which is caused by the dis-
continuity due to the initial condition, although
these effects are damped away when z has
reached 2:0. The number of increments within
the particle has little effect on the values of F;
until the value of K, has decreased to 0-1.
The latter value of K, easily represents the lower
limit one would expect for a physical situation
whilst the solution is stable and convergent for
values greater than (-1 and shows no effect of any
discretization errors.

The numerical solution was checked for over-
all stability and convergence by comparison

of u(v, x, y) for various values of x, v/x and y/x
which were obtained by a numerical solution.
Rosen’s parameters were defined as follows,

u(v, x, y) = C/Co, fractional concentration (33)

x = 3DKz/mvb?, dimensionless length (34)
y = 2D(t — z/v)/b?, dimensionless time (35)
and

v = 3DKR,/b? film resistance parameter  (36)

and the relationships between these parameters
and those used in this study are

u=F, 37

v=K, (38)

x=K.,Y (39)
and

y =2K,Z/3. (40)

Table 2 shows the excellent agreement be-
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tween Rosen’s results and those obtained here,
which indicates that the finite-difference scheme
converges to the correct solution. This was

Table 2. Comparison of Rosen’s and the intraparticle model

results

yx=02;Y =5, x=40;v =K, = 80;

cfey = Fy yix z VA
0-049 010 075 075
0117 0-20 1-50 1-51
0252 0-35 2:66 263
0-454 0-55 413 413
0-675 0-80 600 600
0-849 1-10 825 825
0-992 2:00 1500 1501

vix =0025;Y =40;x =40; v = K, = 10;

cjco = Fo yix z A
0015 0-35 21-00 21-08
0-152 0-50 30-00 30-00
0-361 0-60 3600 3600
0484 0-65 39-00 39-00
0-604 070 4200 42:01
0799 0-80 4800 48-00
0970 100 6000 59-98

vx=01;Y =10;x =05;v = K, = 005;

¢c/co = F, yix z z
0128 010 1-50 1-56
0263 020 300 300
0421 035 525 522
0-517 047 705 702
0654 070 10-50 10-47
0778 1-00 15-00 1516
0948 2:00 30-00 29-89

Z' was calculated from Rosen’s results.
Z was computed using the intraparticle model employing
the following step sizes.

Ay = Az =02;As = 01
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further substantiated by comparison with the
Schumann model, for large values of K, (= 100)
when the intraparticle model approaches the
Schumann one and this is shown in Table 3.

The stability was tested by decreasing the
step sizes, and accuracy to two decimal places
was guaranteed by using the step sizes
As = Ay = Az = 02, provided K, > O:1.

DISCUSSION OF THE INTRAPARTICLE
CONDUCTION MODEL

For the Schumann model, at each value of Y
a uniquely shaped breakthrough (outlet gas
temperature) curve exists, a few are shown in
Fig. 4. However for the intraparticle conduction
model for each value of Y a family of curves
exists for various values of K, and Fig. 5 shows
a range of these. As mentioned earlier as K,
increases the intraparticle model approaches
the Schumann one, unfortunately no satisfactory

o
S

»

~

e 810 2 6 20
20

¥=1,2 3
08
o
o
o
t

4 8
i
)
£,  Dimansionless time

FiG. 4. Breakthrough curves for the Schumann model

Table 3. Comparison of the intraparticle and Schumann models

Y=4 Y=38 Y=12
F z Z z zZ z z
o1 0-81 0-81 328 327 611 611
02 1-54 1-54 4-54 4:54 i 777
03 219 219 557 557 909 9-09
0-4 283 282 653 653 10-30 10:30
05 349 349 7-49 7-49 1105 11-49
06 422 421 852 852 12:76 1276
07 507 507 9-70 970 1418 1418
08 616 616 1117 1117 1593 1594
09 7-84 7-84 1337 13:37 18:54 18-54

Z' Schumann model. Z intraparticle model and the step sizes employed were As = Ay = Az = (-1,
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N

Key
Symbol Value of A,

+ 1-0

o 01
The continuous line
represents A, * @, i.e.
The Schumann model

2z,
Fi1G. 5. Breakthrough curves for the intraparticle conduction model.

definition has been found which will predict a
dividing line between the two models. Such a
definition would be useful because the com-
puting time required to obtain a solution by the
intraparticle model is far in excess of that
required using the Schumann model.

Saunders and Ford [33] proposed from
experimental observations that provided the
value of the dimensionless group, N, = vdC,/k,,
was less than 4 the effect of intraparticle con-
duction is insignificant, whereas Chukhanov
and Shapatina [34] showed that the use of

30

Dimensionless time

Schumann’s model is limited to values of the
inverse of the Biot number, k/hd > 1-1-5.
These two groups differ by the terms, vC, and
h,, and it is questionable which of the two groups
gives the best prediction of the correct model.
The conduction parameter K, is twice the
inverse of the Biot number, hence on the basis
of the Chukhanov and Shapatina prediction,
using K, = 10, the breakthrough curves for
the intraparticle and Schumann models should
coincide. It is evident from Table 4 that this is
not so, although as the value of Y is increased

Table 4. Investigation of the Chukhanov and Shapatina prediction for K, = 10

Y=2 Y=4 Y=28
Fo z 4 (%) z z %) Z z %)
01 No value 0-817 0-791 —-31 3-280 3-238 —-13
0-2 0240 0-221 -71 1-543 1-519 -12 4539 4-504 -08
03 0-620 0-602 -29 2:191 2:170 -09 5-569 5-541 -05
04 1-024 1-009 —14 2-826 2:810 —05 6529 6510 —03
0-5 1-470 1-458 —0-8 3-488 3477 -03 7-494 7-484 —01
0-6 1980 1974 -03 4218 4212 —01 8-524 8524 00
07 2-599 2-600 0-0 5:065 5017 +01 9-698 9-710 +01
0-8 3421 3430 +03 6155 6:173 +03 11-166 11-194 +03
0-9 4728 4755 +0-6 7-836 7-875 +0-5 13-369 +0-4

13-424

Z' Schumann model ; Z intraparticle model; e = 100(Z — Z')/Z' ().
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the two curves seem to approach each other. This
particular prediction concerning the limitation
on the use of the Schumann model does not
seem to be valid.

From the consideration of Table 4 values of
Y were investigated to find those values of K,
which gave an approximate 1-0 per cent agree-
ment between the curves for the two models at
either the 0-2 or 0-8 fractional temperature points.
In Table 5 the curve points at 0:1 intervals are
presented for the two models at which the above

557

The dimensionless group N,, proposed by
Saunders and Ford does not have the flexibility
of YK, > 60.

Butterfield [24] has shown that the use of an
overall coefficient of the type proposed by
Hausen [35] in the Schumann model equations
of a reversing regenerator may lead to significant
errors particularly when the reversing period is
short. It is therefore important when seeking a
correct numerical simulation of a reversing
thermal regenerator that the intra particle con-

Table 5. Comparison of the Schumann and intraparticle models

Y=4 K =15 Y=12 K =5 Y=20" K, =3

Fq z z e(%) z z e(%) z z e(%)
01 0817 0-800 -17 6112 6106 ~17 12271 12034 -19
02 1-543 1519 -09 7773 7-689 -11 14:561 14386 ~12
03 2191 2177 -06 9093 9029 -07 16333 16210 —07
04 2826 2815 -03 10301 10258 —04 17929 17-855 —04
05 3-408 3481 ~02 11-496 11458 -02 19489 19-464 -01
06 4215 4213 -01 12757 12761 00 21-114 21-141 +01
07 5065 5069 +01 14177 14211 +02 22:925 23012 +04
08 6155 6168 +02 15933 16:005 +05 25141 25302 +06
09 7833 7862 +03 18535 18667 +07 28385 28656 +10

Z' Schumann model; Z intraparticle model; e = 100 (Z — Z')/Z'%,.

agreement was obtained. The product of Y
and K, at which the stated agreement occurs is
60 and thus this value seems to predict a dividing
line between the two models. Now

YK, = hyALk/M,C,Bh; > 60 (41)

or
YK, = 3kL(1 — pyM,C,B* > 60.  (42)

The above dimensionless group does not
contain the heat-transfer coefficient, but it does
contain the bed length and the bed voidage,
whereas neither of the previously proposed
groups contained any of the bed properties
except that they used the interstitial velocity.
Hence the prediction by equation (42) infers
that the shorter the bed length, the smaller the
value of YK, and hence there is a greater
possibility of intraparticle conduction effects.

duction test be applied before selecting the
appropriate mathematical model.

EXPERIMENTAL TEST OF THE INTRAPARTICLE
CONDUCTION MIODEL

The experimental apparatus and procedure
are described elsewhere [10, 36]. To test the
model it is necessary to show that the experi-
mental observations and simulating calculations
have identicai breakthrough curves and this
was attempted over a wide range of conditions,
two cases of which are presented here.

The characteristic data for the two fixed beds
and the operating conditions are shown in
Table 6.

The convective heat-transfer coefficients were
obtained from a correlation presented by the
authors for results obtained solely for metallic
spheres [36]. Figures 6 and 7 show the com-
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Table 6. Characteristic data for the two fixed beds

Bed no. 1 2

Bed length, in. 612 817
Bed diameter, in. 274 273
Packing material Lead Soda glass
Packing size, in. 0-357 0238
Packing specific gravity. 11-35 2-51
Packing specific heat, Btu/Ib°F. 0-03 0-189
Gas specific heat, Btu/1b°F. 0-24 0-24
Bed density, Ib/ft°. 4437 99-1

Bed voidage. 9, 37 37

Gas mass throughput, Ib/h ft2. 5564 5623
Superficial velocity, ft/sec. 19-26 19-60
Convective heat-transfer coefficient
Btu/hft? °F. 69-5 835
Specific surface, ft?/ft3. 120 181
Thermal conductivity of material,
Btu/hft? (°F/ft). 20 0-60
] 0 —
o-8f Run | 6in bed of 9mm

lead shot
Air flowrate 5564 1b/ft2

Predicted ¥ =326
06

h

Experimental curve

parisonsand thereisexcellent agreement between
the shapes of the curves although they do not
coincide. This difference between the predicted
and experimental curves was due to the slight
tailing of the step input which was not completely
square. The step increments used in the com-
putation were Az = Ay = (-2 and As = 0-1.
Table 7 shows the comparison between the
curve points predicted for these runs both for
the Schumann case and the intraparticle case.
Very good agreement is obtained for run 1,
where lead shot were used as the packing, but
for run 2 the curves differ considerably. The
value of YK, for run 1 was 66-2 whilst that for
run 2 was 6-1. Hence for run 2 considerable

Run 2 8in bed of 6mm sodo glass
[ spheres with an air flowrote of
5623 Ib/t12 Predicted Y=825

o8-

an

Experimental curve
—o— Schumann mode! prediction

—+— Intraparticie conduction
model prediction

o-2F —0— Schumann model prediction o2r
—x—Intraparticle conduction
model prediction I
n 1 1 1 1 L L 1 L i
0 30 60 ) 30 60
Time, sec Time, sec
F1G. 6. Breakthrough curve comparison for run 1. F1G. 7. Breakthrough curve comparison for run 2.

Table 7. Curve points predicted by the Schumann and intraparticle conduction models

Run 1 Run2
F, t' (sec) t (sec) t' (sec) t (sec)
Y = 3-26, Kr = 2023, YK, = 662 Y =825 K,=074, YK, =61

01 247 2:40 14-22 12-10

02 585 578 19-52 17-68

03 898 891 2385 2236

04 1211 1205 27-87 2679

0-5 1541 15-38 3194 31-29 t' Schumann model
0-6 19-09 19-07 3622 36-14 t intraparticle model
07 23-42 23-45 4113 41-71

08 29:04 2910 4725 48-73

09 3779 3790 5645 59-36
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intraparticle conduction effects are present,
whilst run'1 is free of them.

The intraparticle conduction model! fits the
experimental one extremely well, which indi-
cates that the breakthrough curve for beds where
intraparticle conduction effects are present,
may be predicted accurately using this model.
It is important however to check firstly that
intraparticle effects will be encountered, because
otherwise the Schumann model may be used for
the prediction thus saving considerable com-
puting time. The excellent predictions obtained
here infer that the heat-transfer coefficients
used were in fact the convective ones. Hence
the results presented earlier for metallic spheres
were free of the effects of intraparticle conduction,
whilst the results for the non-metallic spheres
were affected under certain flow conditions,

THE EFFECT OF AXIAL CONDUCTION IN
THE SOLID

If the packing is not particulate, but in the
form of material parallel to the fluid flow,
assumption (d) for the Schumann model will
only be partially valid, because there may be
axial conduction of heat in the solid phase.
The packing is now assumed to be continuous
lengths L equal to that of the packed bed and
heat balance equations may again be formulated.
The one for the fluid phase is unchanged, ie.

M,C,3T,/dl + (M,C,/u) 3T,/ot

=-hAT,-T) (43)
whilst the one for the solid phase is
M,CAT/ ot = h AT, — T, + k,AD*T/01%.
(44

The initial and boundary conditions which
again represent a step change in the gas inlet
temperature are

T=T for =0 and t>0

g gi

(43)
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and
T.=T, for t=0 and L2120, (46

Additional boundary conditions must be
considered to solve (44) at the extremities of
the beds and two types of conditions may be
assumed.

1. Adiabatic boundary conditions

0Tjol=0 atl=0 and I=1L
for t>20. 47
2. Flux boundary conditions,
—kOT/ol = hy(T,— T) at =0
and
I=L for t>0 (48)

Equations (3) and (44) through (48) are made
dimensionless by transforming the independent
variables | and ¢ by the substitutions,

z =t — luyhA/M.C, (10
y=1IL 49)
Y = hbALIM,C, (50
Ky = kA/M,C,L (51)
and
K, = kgh,L, (52)

and the introduction of the normalized tem-
peratures

Fo=(T, - T)/T; - T) (14)
and
Fy=(T, - TINT; — T). (15)
Hence the equations
dF /oy = —Y(F, — F,) (53)
0F Joz = (F, — F,)) + (K/Y) 0*F,/0y* (54)

with the following initial and boundary con-
ditions,
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F,=1 for y=0 and z>=0, (59)
F, =0 for z=0 and 12y=0 (56)
and

1. Adiabatic boundary conditions,

0F Jdy =0 for y=0 and y=1,
and z =0, (57)
2. Flux boundary conditions,
—K0F jdy = h(F, — F)) for y=0
and y=1 and z >0, (58)

describe the axial conduction model.

NUMERICAL SOLUTION OF THE AXIAL
CONDUCTION MODEL

The packed bed is now represented by a grid
asshownin Fig. 8. Equation (53)is approximated
by central differences representation to give
Fy[n,i+ 1] - F [n,i]
Ay
= — 3Y(F,[n,i + 1] + F[n,i]
— Ffn,i + 1] — F[n,i]) + 0(Ay>?).

(59)

AV
AL
£ln1
&[n7]

£+
£l

Az l— Ay —

/=0 /=1
¥y
F1G. 8. Numerical grid representation.

The Crank—Nicholson representation of equa-
tion (54) is

D. HANDLEY and P. J. HEGGS

where X = $K,;Az/Y(Ay)®>. Now at the ex-
tremities of the bed, i = 0 and i = N, it is found
that equation (60) includes fictitious tempera-
tures outside the grid at the positions i = —1
and i = N + 1. Either of the boundary con-
ditions (57) and (58) may be used to eliminate
these temperatures.

The adiabatic boundary (57) is interpreted in
finite difference form by assuming the existence
of a temperature point a distance equal to a
length step Ay outside the grid at which
F [ —1] = F{[0], hence at i = 0 equation (60)
becomes
Ffn+ 1,0] — F,[n,0]

= $Az(F [n + 1,0] + F,[n,0]

— Fn+ 1,0] — F[n,0]) + X(F[n + 1,1]

— Fn+ 1,0] + F{n,1] — F[n,0]) (61)
and similarly at i = N the assumption is that
F[N + 1] = F,[N] resulting in equation (60)
becoming
Fn+ 1,N] — F[n,N] = + 3Az(F,[n + 1,N]

+ F,[n,N] — Fn+ LLN] — F[n N))

+ X(F[n+ 1,N—-1] = FJ[n+ 1,N]

+ F[n,N — 1] — F,[n,N]). (62)

The equations (60), (61) and (62) form a set
of (N 4+ 1) algebraic equations, but with
2(N + 1) — 1 unknowns, that is F [n + 1,
i=1- N]and F[n + 1,i = 0 > N] provided
the gas and solid temperatures are known at the
n time step, hence these equations cannot be
solved as they stand.

Now replacing n by n + 1 in equation (59),
rearranging and putting i = 0 we obtain
FJn+ 1,1]

=e+f(F[n+ 1,11+ F[n+ 1,0]) (63)

Fn+ 1,i] = Fn,i] = + 3Az(F [n + 1,i] + F,[n,i] — F{n + 1,i] — Fn,i])

X{Fs[n +1,i—=1]-2F[n+ 1,i] + F[n+ 1,i + 1]
+ Fni— 1] — 2F[n,i] + F[n,i + 1]

} + 0(Ay?) + 0(Az) (60)
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where

e=(2 - YApA2 + YAy) (64)

and
f= YAy/(2 + YAy), (65)

and the unknown gas temperature at i = 1 is
represented by the unknown solid temperatures
at i=0 and i = 1. For i = 1, equation (59)
becomes

Fjn+1,2]
=eF[n+ 1,17+ f(F[n+ 1,2]
+ F[n+1,1)) (66)

and substitution of equation (63) in (66) gives

Fn+1,2]=¢e* + f(F[n+ 1,2]
+(e+ )F[n+1,1]+ eF[n + 1,0]) (67)

where the unknown gas temperature at i = 2
is now represented by the unknown solid
temperatures at i = 0, 1 and 2.

Hence for the (n + 1) time step the gas tem-
peratures can be found in terms of the solid
temperatures and for i = N, the gas temperature
is given by

Fln+ 1,N] =€+ e" ' fF[n +1,0]
+ e e+ 1) F[n+ L, 1]
+ e 3fle+ DF[n+1,2]+...
+ef(e+ DFn+ I,N — 2]
+fle+ )Fn+ 1,N — 1]
+fF[n+ 1,N]. (68)

The equations of the type (63), (67) and (68)
may be substituted into equations (60), (61)
and (62) to give a set of (N + 1) algebraic equa-
tions of (N + 1) unknown solid temperatures,
Fn + 1,i = 0 —» N, which will be represented
by CxX(n + 1) = D(n), where Cis a (N + 1) x
(N + 1) tri-diagonal matrix superimposed upon
a (N + 1) x (N + 1) lower triangular matrix,
X(n+ 1) is a (N + 1) column vector of the
unknowns and D(n) is a (N + 1) column vector
of the knowns. The values of unknowns in x
are obtained by the inversion X(n + 1) =
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D(n) C™*, this was achieved by a special back
elimination and forward substitution procedure
(10). The components of C, X(n + 1) and D(n)
may be found in Appendix 2.

The flux boundary condition (58) is approxi-
mated by backward difference at i = 0 to give

FJ[0] — F[-1
_Kf( [0] Ay[ i)

= (F, — FJ[0]) + 0(Ay)
and by forward difference at i = N to give

(F[N + 1] - F,[N]
Ay
(F, — F[N] + 0(Ay). (70)

Equations (69) and (70} are used to eliminate
the fictitious temperatures FJ[—1] and
F [N + 1] obtained in equation (60) for i = 0
and i = N. The equations of the type (63), (67)
and (68) may now be used to eliminate the gas
temperatures at the (n + 1) time step and the
resulting set of (N + 1) algebraic equations with
(N + 1) unknown solid temperatures, re-
presented for convenience by C'x(n + 1) = D'(n),
are solved in the identical manner as for the
adiabatic boundary condition case. The com-
ponents of C' and D'(n) may also be found in
Appendix 2.

In both cases the values of F, at the (n + 1)
time step are derived from equation (59) after
the values of F; at that time step have been
evaluated. The numerical analysis is initiated
by use of the initial and boundary conditions
(55) and (56), which in finite-difference form are,

(69)

+ K,

Fjnil]=1 for i=0 and n>0 (71)
and
Fni]=0 for n=0 and N2>i>0.

(72)

Equations (72) and (59) combine to enable the
values of F, to be evaluated at the zero time
condition by the following equation,

F[0,i + 1] = eF,[0, i]. (73)
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STABILITY AND CONVERGENCE OF THE
NUMERICAL SOLUTION OF THE AXIAL
CONDUCTION MODEL

No analytical solution was found for this
model in the literature, although Creswick [37]
has derived an explicit finite-difference solution
for the case of adiabatic boundaries. His
solution however contains a severe stability
criterion.

Az < Y(Ay)*/2K, + Y(Ay)?) (74)

which tends to prohibit its use, and it also appears
to contain a misrepresentation in the numerical
analysis. In his analysis he eliminates the ficti-
tious temperatures outside the grid in the
identical manner, as was reported for equations
(61) and (62). He then continues to represent
the expression 0°F,/0y* at the next length step
i = 1, by (subscripts refer to values of i)

(0F,/0y*); = (AF,/Ay), — (AF,/Ay)o)/28y (75)
and states that
(AF /Ay), = 0, and

(AF,/Ay), = (F|[3] — F[1])/2Ay
resulting in the following,

(@°F,/0y*), = (F[3] — F[1]/4(4y)>.  (76)

This representation of (92F,/dy*);, and
(AF /Ay), is by central-difference approximation,
and representation of (AF /Ay), in this manner
gives(F;[1] — F,[ —1])/2Ay, which by the earlier
assumption cannot be zero. This assumption
of (AF/Ay), =0 implies thermal symmetry
at the boundary and physically this is not so.
This misrepresentation is applied at the last
but one grid point. The representation of
(02F,/dy?); would be expected to be

(Fs[o] - 2Fs[1] + Fs[z])/z(Ay)Z,

which does not alter the stability criterion.

The stability and convergence were checked
by decreasing the values of Az and Ay, and the
solution was found to be more sensitive to the
values of Az. To ensure convergence to two
places of decimals the value of Az was (-1

(77)
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whilst that for Ay was 0-05, except for Y values
less than S when 01 was sufficient.

The solution was checked to converge to the
correct values by comparison with the Schumann
case for decreasing values of K, when the axial
conduction model approached the Schumann
one. Table 8 shows this comparison and it is
apparent that the Schumann model is
approached as K is decreased.

For the flux boundary conditions, the stability
was ensured provided Az < 0-01. This difference
in the stability of the two solutions is caused by
the mismatching of the truncation errors in
equations (69) and (70) with those in (60). For
large values of K, the flux boundary case
approaches the adiabatic one, and this was
found to be true for K, > 10 with ¥ = 2.

DISCUSSION OF THE AXIAL CONDUCTION
MODEL

For the adiabatic boundary case, a family of
curves for various values of K exists for each
value of Y, as shown in Fig. 9, whereas for the
flux boundary case, a family of curves for various
values of K, exists for each combination of
Y and K.

No relationship that would predict a dividing
line between the Schumann model and the
axial conduction one has been proposed [7, 8],
although for values of Y greater than 4, the
product of YK, being less than 0'1 seems to
infer that the Schumann model has been reached.
This relationship was obtained by a parametric
investigation of the adiabatic boundary case
and Table 9 shows the comparison between the
Schumann and axial conduction models. Now

YK, = hAKAJ(M,C,)? < 01 (78)

and this dimensionless group contains the
heat transfer coefficient but not the bed length.
For Y values less than 4 the YK, values pre-
dicting the dividing line increase in an irregular
manner such that for Y =1 there is good
agreement between the models at YK; = 10.
Table 10 presents a comparison between the
Creswick and the adiabatic boundary case
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Table 8. Convergence check for the axial conduction model with adiabatic boundaries

K, =00 0-001 001 01
F, z z z z z
Y=2 01 No value
02 0-240 0242 0242 0-242 0-238
03 0620 0-621 0-621 0619 0601
0-4 1-024 1-025 1-024 1-020 0-984
05 1-470 1-469 1-469 1-462 1-408
0-6 1-980 1-980 1978 1-969 1-901
07 2:599 2-598 2:597 2-586 2-511
0-8 3-420 3418 3417 3-407 3344
09 4728 4276 4726 4726 4733
Y=38 01 3-280 3-288 3-281 3221 2770
02 4-539 4:542 4-533 4-455 3-884
03 5-569 5-568 5-558 5474 4-855
0-4 6529 6526 6516 6432 5-816
05 7-494 7-489 7-480 7-403 6-839
0-6 8:524 8:518 8-511 8450 7997
07 9-698 9-691 9-688 9-656 9-402
0-8 11-166 11-160 11-163 11-184 11-286
09 13-369 13-368 13-385 13-524 14-380
Y =16 01 9-132 9-160 9-128 8-856 7-010
02 11-133 11-135 11-103 10-827 8-928
03 12-694 12-684 12654 12-396 10587
0-4 14-109 14-089 14-064 13-840 12:222
05 15-498 15473 15-453 15280 13933
06 16951 16924 16913 16-810 15903
07 18-577 18-552 18:553 18-551 18-258
0-8 20-575 20-557 20-577 20-733 21-403
09 23-513 23-517 23-573 24028 26538
Z' corresponds to the Schumann model.
1o Z 6 20

0-8

06

o

04

0-2

FiG. 9. Breakthrough curves for the longitudinal conduction model with adiabatic boundary

The continuous line

represents 4=0, i.e. the
Schumann model

1

20

Z ,Dimensionless time

conditions.

30
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Table 9. Comparison of the Schumann and axial conduction models

Y=4 K, =005 Y =10 K, = 001 Y = 40 K, = 00025
F, z z e(%) z z e(%) z z e(%)
0-1 0-826 0-810 -19 4-678 4:564 —-24 29-050 28:635 ~14
02 1-548 1-511 —2:4 6-140 6007 -22 32:345 32-000 -11
0-3 2-192 2-138 -2:5 7-317 7-179 -19 34-872 34-597 —-08
04 2-825 2-758 —-24 8-403 8273 —16 37-134 36933 -05
05 3484 3410 -21 9-487 9-374 —-12 39336 39-218 -03
06 4-209 4-135 —18 10636 10-554 —-08 41:623 41-603 0-0
0-7 5058 4-996 —-1-2 11939 11-907 -02 44-165 44-268 +02
0-8 6-148 6122 —-04 13-561 13-614 +04 47-269 47-540 +06
09 7-832 7908 +10 15981 16215 +21 51-805 52361 +09
Z' Schumann model; Z longitudinal model; e = 100 (Z — Z')/Z'%,.
Table 10. Comparison of Creswick’s solution
Creswick
Fy= 01 0-2 05 08 09

Y K, Az Ay V4 zZ Zz z z

8 01 0-004 0-01 2773 3-897 6-902 11-450 14-629

8 10 0-010 0-05 1-588 2:519 5-450 12-566 14-575
16 01 0-031 0-02 7091 9-056 14-244 21-949 27-290
16 10 0019 005 3-669 5609 12-851 26-885 37-484

This work

8 0-1 0-10 0-05 2-770 3-884 6-839 11-286 14-380

8 1-0 0-10 005 1:527 2-380 5438 11-312 15-755
16 01 0-10 005 7-010 8-927 13-953 21-403 26-538
16 1-0 0-10 0-05 3-206 4739 10-162 20-522 28-357

solutions. The Creswick solution predicts much
shallower curves and the difference between the
solutions becomes greater as K increases.
The Crank-Nicholson implicit scheme employs
much larger time steps than the explicit scheme
and saves a considerable amount of computing
time.

It is interesting to note that the simple criteria
used by Tipler [38] to test for the importance of
axial conduction in the solid is equivalent to
K and therefore

_ Axial heat flux in the solid
" Heat flux from fluid to solid over total bed.

L

The criteria for axial conduction defined here
differs from the above in that it is calculated on
the basis of a single transfer unit and is therefore

independent of bed length.

Axial heat flux in solid

~ Heat flux from fluid to solid per unit
dimensionless bed length.

L

Hlinka and Landau [39] have also considered
the effects of longitudinal conduction in the
tube wall on the performance and temperature
distribution in a steady state counterflow heat
exchanger, however their analytical treatment is
applicable only to the case of reversing thermal
regenerators operating at short cycle times.

EXPERIMENTAL TEST OF THE

AXIAL CONDUCTION MODEL
The apparatus and experimental procedure
are described elsewhere [36] and the packings
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employed consisted of § in. thick aluminium
plate sets of various lengths and spacings.
Hence the packing material was not continuous
along the bed length thus the physical situation
is not analogous to the theoretical model
presented here. The physical model was simu-
lated theoretically by considering each plate
set to be a separate bed and the overall test bed a
series of these separate beds. The zero length
conditions for the sets after the first one is that
the F, at the entrance to the set is taken as the
exit temperature from the previous set.

The characteristic data and operating con-
ditions for two fixed beds are shown in Table 11,
The heat-transfer coefficients were obtained
from measurements taken by the authors [36],
where the Schumann model was assumed to fit
the physical model.
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model is free of the effects of axial conduction in
the packing and thus the heat transfer coefficients
reported earlier were the convective ones. For
these physical conditions the Schumann model
may be employed to predict the breakthrough
curves hence saving computing time.

Figure 10 for run 3 also shows the predicted
curve for the model which allows for a con-
tinuous packing material. The disagreement
between the curve shapes indicates that this
model is invalid for this bed arrangement. The
values of Y are less than 4, and so the equation
(78) cannot be applied to the experimental
conditions to predict the effect of longitudinal
conduction.

CONCLUSIONS
1. The model for the transient transfer of heat

Table 11. Characteristic data for the two fixed beds

Bed no.

Bed Length in.

Bed Diameter in.

Packing material.

Material thickness, in.

Plate spacing, in.

Plate length, in.

Packing specific gravity.
Packinyg specific heat, Btu/Ib°F.
Gas specific heat, Btu/1b°F,
Bed density, 1b/ft3.

Bed voidage, %.

Packing characteristic dimension, in.
Gas mass throughout, Ib/hft?.
Superficial velocity, ft/s.

Convective heat-transfer coefficient, Btu/hft>°F,

Specific surface, ft2/ft3,
Thermal conductivity of the material,

Btu/hft?CF/ft).

3 4
812 813
274 272
Aluininium Aluminium
i
8 B
0104 0-052
2 1
2-85 2-80
0-22 022
0-24 0-24
96:6 1203
46 31
042 039
1680 5667
584 19-70
155 59-2
94 127
127 127

The comparisons between the recorded obser-
vations and the simulated values are shown in
Figs. 10 and 11, excellent agreement being
obtained. The step increments used in the
computation were Az =01 and Ay = 005,
Table 12 shows the comparison between the
curve points predicted for these runs both for
the Schumann case and the axial conduction
case. The good agreement infers that the physical

in a packed bed of spheres with allowance for
intraparticle conduction effects is solved
numerically by applying the Crank—Nicholson
approximation to the partial differential equa-
tions. This solution is shown to converge to the
correct solution by comparison with the analyti-
cal solution derived by Rosen and with the
Schumann model.

2. A parametric investigation of the model
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-0
Run 3 8in bed of 2in long plates
- spaced 0-104" #
Air flowrate 1680 Ib/h ft2
O-8[~ predicted ¥ =2-39
Q-6

N
—

0-4

0-2

- 1 s Il

—Experimental curve
—O— Longitudinal model with

—+— Longitudinal mode! with

discontinuous pocking material

continuous packing material

o] 30 60

Time,

90 120 150

secC

Fi16. 10. Breakthrough curve comparison for run 3.

revealed a dimensionless group which predicts
the dividing line between the Schumann and
intra-particle conduction models. This group
is independent of the convective heat-transfer
coefficient, but includes the bed length and void-
age. The group is shown to be superior to those
predicted by Saunders and Ford, and by Chuk-
anov and Shapatina.

| Spaced 0-052"

0-8f Predicted r=3-74

06

0-4f

Q-2

| Air flowrate 5667 Ib/h ft2

3. The model predicts breakthrough curves
that agree extremely well with experimental
observations, whether intraparticle conduction
effects are present or not.

4. The heat-transfer coefficient correlation
presented elsewhere [36] by the authors for
results obtained from beds of metallic spheres
are confirmed by this study to be free of the

| Run 4 8in bed of lin long piates

- e Experimental
———x—— Schumann
——— Longitudinal model with

discontinuous packing material

1 |

(¢} 30 60

1 |
90 120 150 180

Time, sec

F1G. 11. Breakthrough curve comparison for run 4.
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Table 12. Predicted curve points for the runs by both the Schumann
and axial models

Run 3 Run 4
F, Time' (sec) Time (sec) Time' (sec) Time (sec)
01 239 2:06 8-79 8:62
02 26:04 25-17 17-63 17-34
03 4945 48-19 25-60 25-25
04 73-85 72-32 3347 33-08
0-5 100-23 98-63 4170 41-31
06 130-08 128-60 5079 50-40
07 166-12 164-80 61-44 61-09
0-8 213-26 212-59 7513 74-88
09 28777 288-64 96-31 96-29

Y=239Y,=060K,; =408Y =374 Yy =047 K = 608.
Time’: Schumann model. Time : Axial conduction model.
Y: Bed length parameter. Y; and K refer to the individual beds

within the overall bed.

effects of intraparticle conduction and are there-
fore convective coefficients.

5. The model for the transient transfer of heat
in a bed of parallel plates with allowance for
axial conduction effects in the packing material
is solved numerically employing Crank-
Nicholson approximations. Adiabatic and flux
boundary conditions are assumed.

6. The solution for adiabatic boundaries
predicts different results to those obtained by
Creswick’s solution which appears to contain a
misrepresentation.

7. A parametric investigation revealed a
dimensionless group which predicts a dividing
line between the Schumann model and the axial
conduction model for Y values greater than 4.

8. The model predicts breakthrough curves
which agree well with experimental observations,
inferring that the heat-transfer coefficients re-
corded previously were free of axial conduction
effects.
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APPENDIX 1

Components of equations, Ax(n + 1) = B(n) which represent the set of simultaneous algebraic
equations for the intra-particle conduction case at each length step.

=[2+Ay —Ay
—Mu 1+ M1+ u -M
—Muy,_, I+M-_ —Mw._,
Tl T 4 3M
Xn+ 1) =[Ffn+ 1,i]
Fln+ 1,4, k]

Fln+ 1,i,k — 1]
F[n+},i,k—2]

LF[n +1,i,0]

|
i
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B(n) Q-aF[n+1i—-1]+aF[n+1i-1]
MuF [n,i]+ (1 — M + Mu) F[n, i, k] + MF[n, i,k — 1]
My, F[n, i, k] + (1 — MyF[n, i,k — 1]+ Mw,_[n, i, k — 2]
i

{
3MF[n,i,1]'+ (1 — 3M) F[n, i, 0]

where
u=As(l + 1/k)K,,
M = K,Az/3As?
b= (1 + 1/K)2,
and

w, = (1 — 1/k)/2.

APPENDIX 2

Components of the simultaneous algebraic equations, CX(n + 1) = D(n), which represent the
longitudinal conduction case with adiabatic boundaries at each time step.

C=[1+x+4Az -x ]
—g, —ho+X 1-H+2X -X
—9: —hy —hy+ X ll-—-H+2X -X
| | | g §
_éN—l ‘_h;‘v,‘z _h§_3 hN"“ oen —k0 + X 1 - H + X
Xn+ 1) = [Fn+ 1,0] E
Fs[r? + 1,1]
|
|
Ffn+1,N - 1]
F{n+ 1,N]
D(n) = Az + (1 + X — 30 F[n,0] + XFn, 1]

1AZe + F,[n,1]) + (1 — 2Az — 2X) Fyn, 1] + X(Fy[n,2] + F,[n,0])
$Az(e* + F[n,2]) + (1 — 3Az — 2X) F,[n,2] + X(F|[n,3] + F[n 1]

i
i

1Az(e" + F,[n,N]) + 1 - Az — X)F[n,N] + XF,[n,N — 1]

where e =2 —YAy)/(2 + YAy),
S =YAy/2 + YAy),
X = 1K, Az/YAy?,
g9; = JAze'f,
h; = 1Azé'fle + 1)
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and

H =3Az(f - 1).

For the flux boundaries case, the equations C'x'(n + 1) = D'(n) differ only in the first and last rows,
so that

C=[1+X(1+aK,) -X
H i

|
t

!
| )
1

—gN—l ““hN_Z... _ho + X 1 - H + X(l - a/Kf) .

Résumé—Les équations mathématiques décrivant le transport de chaleur tranmsitoire entre le fluide
s’écoulant 3 travers un lit fixe et ce lit sont formulés pour les situations ot il y a une résistance au transport
de chaleur dans la phase solide et une conduction thermique 4 I'intérieur de la phase solide dans la direction
de I’écoulement du fluide.

On présente une analyse numérique pour une solution par calculateur de ces équations et une recherche
paramétrique des modéles est employée pour montrer que les valeurs de certains groupes sans dimensions
apparaissant & partir de la formulation mathématique peuvent étre utilisées pour définir la gamme des
conditions sous lesquelles les mécanismes de transport de chaleur alternatif sont importants. Les observa-
tions expérimentales des profils de température de sortie en fonction du temps qui suivent un changement
par échelon de la température du fluide d’entrée ont été comparées avec les profils prédits théoriquement
afin de vérifier la validité des modéles mathématiques. Les valeurs critiques des groupes sans dimensions

définissant la gamme limite d’applicabilité des différents modeéles sont présentées.

Zusammenfassung— Die mathematischen Beziehungen, welche den instationdren Warmeiibergang zwischen
dem durch ein Festbett stromenden Medium und dem Packungsmaterial des Festbetts beschreiben,
werden angegeben fiir den Fall (1), dass innerhalb der festen Phase kein Warmetransport zugelassen wird
und fiir den Fall (2), dass Wirmeleitung in der festen Phase in Strémungsrichtung angenommen wird.

Eine numerische Analyse fiir die Ldsung der Gleichungen auf einer Rechenanlage wird angegeben. Die
Untersuchung der einzelnen Parameter der Modelle zeigte, dass die Werte verschiedener dimensionsloser
Kenngrdssen, die sich aus der mathematischen Formulierung ergeben, dazu verwendet werden kdnnen,
den Bereich von Bedingungen festzulegen, unter denen die beiden oben angegebenen Arten des Wirne-
austausches von Bedeutung sind.

Experimentelle Untersuchungen der Zeit- Temperatur-Durchbruchprofile in Abhangigkeit von einer
schrittweisen Anderung der Eintrittstemperatur des Strémungsmediums wurden mit den theoretisch
vorausberechneten Profilen verglichen, um die Giiltigkeit der mathematischen Modelle nachzupriifen.
Die kritschen Werte der dimensionslosen Kenngrossen, welche die Grenzbereiche der Anwendbarkeit

der verschiedenen Modelle festiegen, werden angegeben.

Anvoramua—MaremMarnueckne ypaBHeHUA, OMMCHBAlONe HECTAMOHADHHN NMepeHoC Temnjia
AMUIKOCTBIO, IPOTEKAIOMEH Yepe3 HEeNOABMMKHHIN cioff Hacagku, cCPOPMYIMPOBAHHW IuA
ciydaeB, korga (1) cymecTEyeT cONPOTHBIEHHE IIePEHOCY Tellla B mpefelax TBepoit dasu u
(2) B TBeppO Pase UMeeT MeCTO TEMIONPOBONHOCT: B HANPABICHUM ABHKCHUA KUIKOCTH.
IIpeacraBnen 4YnCIeHHH aHANU3 [JIA PEUIEHMA STUX ypaBHEHMH Ha MAalIMHE, M Iapa-
MeTpHYeCKOe HCCIeROBaHNe MOReelt MPUMEHASTCA A TOTO, YTOOK MOKA3aTh, YTO BHAYEHUA
olpefielleHHHX Ge3pasMepHLIX TPYNIN, BO3HHKAIONMX IPK MaTeMaTHYecko#t o6paGoTke, MOryT
KCIONb30BATHCA I ONpefieIeHHA AUAlasoHa YCJOBHMM, IPM KOTOPHIX BaMHH Jpyrue
MEXaHUBMH HepeHoca Temia. PeaylbTaThH SKCHePHMEHTAIBPHHX HaOioAeHu! 3a npoqmnamu
TeMOeparypH, Kak OQYHKIMK BPeMeHH, IOCJHe CTYIEHYATOr0 WH3MEeHeHMA TeMmepaTypu
MUJKOCTH HA BXOJE, CPABHMBAJNCH C TeOPETHYECKMMHN NMPOQHIAMH [JIA MPOBEPKH crpaBe-
AJUBOCTH MAaTEMATHUYECKMX Mopeiell. IIpefcTaBieHs KpHTHUECKNE 3HAYeHHA GeapasMepHBIX
rpyNiH, ONpeRelAoUX AMANa30H MIPUMEHNMOCTH PasInYHHX MoAelel.



