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Abstract-The mathematical equations describing transient heat transfer between the fluid flowing through 
a fixed bed of packing are formulated for the situations where (1) there is resistance to heat transfer within 
the solid phase and (2) there is thermal conduction in the solid phase along the direction of fluid flow. 

Numerical analysis is presented for a computer solution of these equations and a parametric investigation 
of the models is used to show that the values of certain dimensionless groups arising from the mathematical 
formulation may be used to define the range of conditions under which the alternative heat-transfer 
mechanisms are important. Experimental observations of time temperature breakthrough profiles subse- 
quent to a step change in the inlet fluid temperature have been compared with the theoretically predicted 
profiles in order to check the validity of the mathematical models. Critical values of the dimensionless 

groups defining the limiting range of applicability of the various models are presented. 
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NOMENCLATURE 

surface area per unit bed volume 
[ft’/ft”] (= 3(1 - p)/B for spheres) ; 
sphere radius [ft] ; 
gas specific heat [Btu/lb”F] ; 
solid specific heat [Btu/lb”F] ; 
fractional internal solid temperature ; 
fractional gas temperature; 
fractional outlet gas temperature ; 
fractional solid temperature ; 
heat-transfer coefftcient per unit sur- 
face area [Btu/hft2”F] ; 
the number of a length steps from the 
bed entrance ; 
dimensionless conduction parameter, 
= kJh,B; 

total number of steps across a radius, 
= l/As ; 
solid thermal conductivity 

[Btu/hft2(“F/ft)] ; 
bed length [ft] ; 
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distance from the bed entrance [ft] ; 
constant, = K,Az/3(As)’ ; 
gas throughput per bed cross-section 
[lb/hft’] ; 
bed density [lb/ft3] ; 
number of a radial steps from the 
particle centre ; 
total number of steps in the bed length ; 
soakage number, = vC, Blk, ; 
number of a time steps since the step 
input ; 
void fraction ; 
distance from the centre of the sphere 

[ftl ; 
dimensionless radius, = r/B; 

temperature within a particle [“F] ; 
gas temperature [“F] ; 
inlet gas temperature [“F] ; 
outlet gas temperature [“F] ; 
solid temperature [“F] (surface); 
initial solid temperature [“F] ; 
time since the introduction of the step 
change, [h] ; 

superficial gas velocity [ftjh] ; 
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interstitial gas velocity [ft/h] ; 
dimensionless bed length parameter, 

h,ALIM,C, ; 
dimensionless bed length, Z&AI/M,C, ; 
dimensionless time parameter, 

h,A(t - L/u)M,C, ; 
dimensionless time, h,,(t - I/u)M,C, ; 
grid radial increment ; 
grid length increment ; 
grid time increment ; 
solid density [lb/ft3] ; 
cross-sectional area of packing per 
cross-section of bed [ft’/ft”] ; 
constant, (2 - YAy)/(2 + YAy); 
constant, YAy/(2 + YAy); 
dimensionless flux conduction para- 
meter, = k$hdL ; 
dimensionless longitudinal conduction 
parameter, = kJJM,C,L ; 
constant &AJJ/Y(AY)~ ; 
Small square brackets contain the grid 
coordinates of the preceding tempera- 
ture point F, F,. 

INTRODUCTION 

THE SCHUMANN model [l] comprising a pair 
of coupled hyperbolic partial differential equa- 
tions has been applied in many instances 
[2-lo] to determine the heat transfer coefficient 
for a gas flowing through a fmed bed. This model, 
however, assumes that the thermal conductivity 
of the packing material does not affect the heat 
transfer although in many cases this is not so. 
This present work arose out of the need to check 
that heat-transfer coefficients derived [lo] by 
use of the Schumann model were free of the 
effect of the packing thermal conductivity. 

Mathematical models [l l-173 have been 
proposed for the inclusion of the packing 
conductivity, and analytical solutions derived 
[13, 18, 191, although their use is cumbersome. 
Numerical solutions may be handled more 
easily provided the solution has been shown to 
be valid. This may be achieved by comparison 
with the analytical solution or by comparison 

with the simple solution (Schumann model) 
when the effect of conductivity is allowed to 
become small. 

The models presented here are solved numeri- 
cally for the particular case of a fluid flowing in 
one direction through a fixed bed so as to 
calculate the breakthrough temperature profile 
when the inlet fluid temperature is subjected to 
a step change. Analysis of the shape of the 
breakthrough temperature profile can be used 
to calculate the convective heat-transfer co- 
efficient at the packing surface. 

The same models with different boundary 
conditions may be used to describe the operation 
of a pair of reversing thermal regenerators [20- 
22]. Hausen [23] and Butterfield [24] have 
shown that for this particular case the point 
temperatures in the solid packing vary almost 
linearly with time throughout the flow cycle and 
an overall (lumped) heat-transfer coefficient in- 
corporating the thermal resistance of the packing 
may be employed in the analytical solution of 
the Schumann model to calculate the thermal 
efficiency and temperature distributions. 

Razelos and Lazaridis [40] have presented 
computed values of correction factors which can 
be used to obtain lumped heat-transfer coeffi- 
cients from convective film coefficients for 
subsequent use in the Schumann model as 
applied to a simple thermal regenerator with 
hollow cylindrical packing geometry. This ap- 
proach may, however, be inadequate when 
additional complications such as varying 
physical properties, heat-transfer coefficients 
and heat sources are present. 

Willmott [25] has presented computer solu- 
tions for the Schumann model with boundary 
conditions simulating a pair of reversing thermal 
regenerators and these may be extended to 
allow for the temperature variation of physical 
properties and heat-transfer coefficient within 
the packing. Solutions of the same problem 
using electrical resistance analogues have been 
used by Hlinka [26] and Razelos [27] to investi- 
gate the design and performance of blast 
furnace regenerator stoves. 
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THE SIMPLE OR SCHUMANN MODEL 

This model has received much attention in 
the literature [2, 4, 6, 9, lo] and thus will be 
dealt with briefly here. The equations describing 
this model when put in dimensionless form are 
as follows, 

within the particles, i.e. intraparticle conduction 
effects. 

A heat balance across an element of the bed, 
as shown in Fig. 1, for the fluid phase gives 

M,C, aqal + (M~c~/u) aqat 

= - hdA(Tg - TJ. (3) 

and 

aqay = - (F, - Fs) (1) 

aF$az = + (F, - F,). (2) 

The following simplifying assumptions being 
taken : 

(a) The thermal constants of the system are FIG. 1. Model of the packed bed. 

independent of temperature. 
(b) There is no radial heat transfer. 
(c) The fluid is in plug flow. 
(d) Axial conduction in either the fluid phase or 

The thermal behaviour for each particle, see 
Fig. 2 (assumed to be spheres of radius B), is 
described by 

the solid phase is negligible. 
(e) The fluid velocity does not vary along the 

p,c,aT/at = ks(a2Tjar2 + (2/r) aT/ar). (4) 

bed. 
(f) There is no thermal gradient within the 

particles. 

Numerical solutions for this model have been 
derived and shown to be stable and convergent 
for a variety of initial and boundary conditions 
[9,10,14,25,28]. However the computing time 
for obtaining a solution depends upon the 
numerical method. The central difference scheme 
proposed by Price [9] which is identical to the 
trapezoidal approximation proposed by 
Willmott [25], would appear to be the superior 
one. In this case, integration step sizes of O-3 
guarantee accuracy to three decimal places. 
The Price solution was used as a comparison 
for the solutions obtained later which include 
the effects of packing conductivity. 

FIG. 2 Individual spherical particle. 

The equations (3) and (4) are coupled 
heat balance at the gas-solid interface, 

- k,(aT/ar),=, = hd(T, - T,) 

by the 

(5) 

INTRAPARTICLE CONDUCTION EFFECTS 

For packed beds containing particles of low 
thermal conductivity material, e.g. glass and 
ceramics, assumption (f) of the simple model is 
invalid under certain conditions in which case 
allowance must be made for thermal gradients 

and the system is completed by the symmetry 
condition 

(aT/ar),=, = 0. (6) 

The initial and boundary conditions, repre- 
senting a step change in the gas inlet temperature 
are 

T, = TBi for I=0 and t>O, (7) 

and 

T=T,=Ki for t = 0, Ba r 2 0 

and La1>0. (8) 

The equations (3) through to (8) are made 
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dimensionless by transforming the independent NUMERICAL SOLUTION OF THE 

variables 1, t and I using the following substitu- INTRAPARTICLE CONDUCTION MODEL 

tions. The packed bed is now represented by a three 

Y = hcvWM,C,, (9) 
dimensional grid as shown in Fig. 3. 

The equation (16) is approximated by central 
z = (t - l/u) h,A/M,C,, (10) difference formula giving 

s = r/B 
and 

K = klh& 

(11) F,[n + 1, i] - F,[n + 1, i - l] 

AY 
(12) = - +(FJn + 1, i] + F,[n + 1, i - l] 

and introducing the normalized temperatures - F,[n i 1, i] - FJn + 1, i - 11) + O(Ay’) 

F = (T - T,J/(T,i - Tsi), (13) (22) 

Fg = (T, - T,iMT,i - T,i) (14) 
where the symbols inside the square brackets 
indicate the coordinates on the computational 

and grid of the gas and solid temperatures F, and 

F.v = (T, - T,i)/(T,i - TJ (15) Fg 
The equation (17) is represented by the Crank- 

Thus the following equations describe the Nicholson 6-point implicit form [29], resulting 
intraparticle conduction model for transient in 

F[n + 1, i, m] - F[n, i, m] = 

AZ 

+ l/m) F[n + 1, i, m + l] - 2F[n + 1, i, m] + (1 - l/m) F[n + 1, i, m - 

n, i, m + l] - 2F[n, i, m] + (1 - l/m) F[n, i, m - l] 
(23) 

+ O(Az) + O(As)‘. 

heat transfer between fluid and solid in a fixed The equation (18) for the gas-solid interface 
bed. is approximated by central difference formula 

aF,/ay = -(F, - F,), 
(16) by assuming the existence of a temperature at a 

I 

aFlaz = (Kr/3)(a2F/as2 + (2/s) aF/aS), 

and 

-K~aF/as),=, = +(F, - F,) 

(aF/as),=, = 0, 
with the following initial and boundary 
ditions, 

Fg = 1 at y = 0 and z 2 0 

and 

F=F,=O at z=O,l>s>O 

and Y 2 y 2 0. 

(17) 

(18) 

(19) 

con- 

(20) 

(21) 

Grid positions along the 

FIG. 3. Numerical grid representation of the bed. 
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distance As from the solid surface, position which in their finite-difference form are as 

(k + I), follows : 

_K(FCp,Ck+l]-FCp,i,k-11) 
r 2As 

= F,Cp, i] - F,b, i] + 0(As2) 

where p = n, n + 1. 

(24) 

FJn, i] = 1 at i=O and n 2 0. (28) 

F[n, i, m] = 0 at n=O,k>m>O 

and n > i > 0 (29) 

and 
The truncation error in equation (24) matches 

that used in equation (23). The hypothetical 
temperatures obtained when m = k in equation 
(23) may be eliminated by using equation (24) 
thus giving the following equation ; 

F&n, i] = F[n, i, k]. (30) 
The resulting set of algebraic equations (22) 

F[n + 1, i, k] - F[n, i, k] 

= M(F[n + 1, i, k - l] - F[n + 1, i, k] 

+ F[n, i, k - l] - F[n, i, k] 

+ As(1 + l/k)/K,(F,[n + 1, i] 

- F[n + 1, i, k] + FAn, i] - F[n, i, k])) (25) 

M = KAz/3As2. 

At the centre of the particle, m = 0, aF/as = 0, 
and the indeterminate term (2/s) aF/as has the 
limit 2a2F/as2 at s = 0, so that equation (17) 
becomes, 

(23), (25) and (27) are represented for con- 
venience in the matrix form by xZ(n + 1) = @n), 
for a given length position, i, where x is a 
(k + 2) x (k + 2) tridiagonal matrix, jT(n + 1) 
is a (k + 2) column vector of the unknown 
temperatures and an) is a (k + 2) column 
vector of the known temperatures. The com- 
ponents of &Z(n + 1) and @n) are shown in 
Appendix 1, and the solution is merely the 
inversion X(n + 1) = &) A -I, which is achieved 
by a Gauss elimination and substitution pro- 
cedure (41), on the tridiagonal matrix. 

aqaz = Kra2FIas2 at s = 0. (26) 

The Crank-Nicholson representation of equa- 
tion (26), and the condition of symmetry give the 
following equation 

F[n + 1, i, 0) - F[n, i, 0] 

= 3M(F[n + 1, i, l] - F[n + 1, i, 0] 

+ F[n, i, l] - F[n, i, 01). (27) 

The (k + 2) algebraic equations (22), (23), (25) 
and (27) describe the intraparticle conduction 
model by finite difference approximation and 
at the (n + 1, i) step point there will be (k + 2) 
unknown temperatures, F,[n + 1, i] and 
F[n+ l,i,m=O + k]. provided the gas and 
solid temperatures at the (n, i) point, and the 
gas temperature at the (n + 1, i - 1) point are 
known. 

Stability and Convergence of the Numerical 
Solution of the Intraparticle Conduction Model 

The stability of the hyperbolic and parabolic 
partial differential equations are known but 
the manner of coupling these two equations by 
the flux boundary condition at the particle 
surface may seriously affect the overall stabilfty 
of the numerical analysis. Parker and Crank 
[30] Albasiny [31] and Keast and Mitchell [32] 
have discussed the stability of the Crank- 
Nicholson formula for various parabolic partial 
differential equations and boundary conditions, 
and found that persistent discretization errors 
may occur in the solution. These errors are 
dependent upon the increment size used in the 
approximation of the parabolic equation. 

The numerical analysis was initially checked 
for stability at the zero length condition where 
the system is in fact the following 

The starting values for the solution are ob- 
tained from the initial and boundary conditions, 

;=K,B+@g] (31) 
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Table 1. Stability of the zero length condition 

AZ AS 
z = 0.1 2.0 F, = 0.999 

F, F, steps F, 

K, = 100 0.01 0.20 a09659 
0.05 0.20 0.095 11 
@lo 0.20 OTI9875 
0.10 0.10 0.09870 
0.10 0.05 009880 
0.20 0.20 0.69813 

K, = 1.0 0.01 0.20 0.20179 
0.05 0.20 0.20453 
0.10 0.20 0.22435 
0.10 0.10 0.24660 
0.10 0.05 0.25536 
0.20 0.20 0.64813 

K, = 0.1 0.01 0.20 030626 
0.05 0.20 0.30776 
0.10 0.20 0.3 1267 
0.10 0.10 0.44365 
0.10 0.05 0.53995 
0.20 0.20 0.79603 

and 

KF 
0 r as s=l 

= F, - F, (32) 

with F, = 1 for z > 0 and F, = F = 0 at z = 0 
and 1 > s > 0. Table (1) shows the values of 
F, the particle surface temperature for z = 0.1 
and 2.0, the number of time steps required for 
the value of F, to reach 0.999 and the value at 
that time for AZ = 0.01, O-05, 0.1, 0.2 and for 
As = 0.2, O-1, 0.05. Decreasing the size of AZ 
the time step only affects the value of F, at very 
small values of z which is caused by the dis- 
continuity due to the initial condition, although 
these effects are damped away when z has 
reached 2.0. The number of increments within 
the particle has little effect on the values of F, 
until the value of K, has decreased to 0.1. 
The latter value of K, easily represents the lower 
limit one would expect for a physical situation 
whilst the solution is stable and convergent for 
values greater than 01 and shows no effect of any 
discretization errors. 

The numerical solution was checked for over- 
all stability and convergence by comparison 

0.86440 693 0.99901 
0.86420 139 0.99905 
@86365 69 0.99930 
0.86352 69 0.99950 
0.86349 69 0.99958 
0.86367 35 0.99926 

0.84387 870 0.99937 
0.84391 174 0.99937 
0%402 87 0.99937 
0.84372 87 0.99937 
0.84085 87 0.99938 
0.84433 44 0.99943 

0.86740 2875 0.99990 
0.86741 575 0.99990 
0.86745 288 0.99990 
0.86285 284 0.99990 
0.86182 283 0.99990 
0.86760 144 0.99990 

with the infinite integral solution derived by 
Rosen [18, 191 for the analogous case of solid 
diffusion in packed beds. He tabulated values 
of u(v, x, y) for various values of x, v/x and y/x 
which were obtained by a numerical solution. 
Rosen’s parameters were defined as follows, 

u(v, x, y) = C/Co, fractional concentration (33) 

x = 3DKz/mvb2, dimensionless length (34) 

y = 2D(t - z/v)/b’, dimensionless time (35) 

and 

v = 3DKR,-/b2, film resistance parameter (36) 

and the relationships between these parameters 
and those used in this study are 

u = F, (37) 

v = K, (38) 

x = K,Y (39) 

and 

y = 2K,ZZ/3. (40) 

Table 2 shows the excellent agreement be- 
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tween Rosen’s results and those obtained here, 
which indicates that the finite-difference scheme 
converges to the correct solution. This was 

TabJe 2. Comparison of Rosen’s and the intraparticte modef 
results 

-- 
v/x=O.~;Y=~;X=~O;V=K,=~.O; 

c/c0 = F, YIX Z Z 

0.049 0.10 0.75 0.75 
0.117 0.20 1.50 l-51 
0.252 0.35 2.66 2.63 
0.454 0.55 4.13 4.13 
0.675 0.80 600 6.00 
0.849 1.10 8.25 8.25 
0,992 200 1SOO 15.01 

v/x = 0.025; Y = 40; x = 40; Y = K, = 1.0; 
c/c0 = F, Yix 2’ Z 

0~015 0.35 21.00 21.08 
0.152 050 30.00 3003 
0361 0.60 3600 36.00 
0.484 0.65 39.00 39+30 
0604 670 42.00 42.01 
0.799 0.80 48.00 48.00 
0.970 100 6000 59.98 

v/x=0~1;Y=10;x=05;v=K,=0~05; 
c/c, = F, YlX Z Z 

0.128 0.10 150 1.56 
O-263 0.20 3.00 3.00 
0.421 0.35 5.25 5.22 
0517 0.47 7% 7.02 
0.654 0.70 10.50 10.47 
0.778 1.00 1.500 15.16 
0.948 2.00 3oGO 29.89 

Z’ was calculated from Rosen’s results. 
2 was computed using the intraparticle model employing 

the following step sizes. 
Ay = AZ = 0.2; As = 0.1. 
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Table 3. Comparison of the intraparticle and Schumann models 
- 

Y=4 Y=8 Y= 12 

F z’ Z Z Z z’ Z 

0.1 0.81 0.81 328 3.27 611 6.11 
0.2 1.54 154 454 454 717 7.77 
0.3 2.19 2.19 5.57 557 9.09 909 
0.4 2.83 2.82 653 653 10.30 10.30 
0.5 3.49 349 749 7.49 11.05 11.49 
0.6 4.22 4.21 852 8.52 1276 1276 
0.7 SO7 SO7 9,70 9-70 14.18 14.18 
08 6.16 616 11.17 11.17 1593 15.94 
0.9 7-84 7.84 13.37 13.37 18.54 1854 

-- 

Z Schumann model. Z intraparticle model and the step sizes employed were As = Ay = Ar = 0.1. 

further substantiated by comparison with the 
Schumann model, for large values of K, (= 100) 
when the intraparticle model approaches the 
Schumann one and this is shown in Table 3. 

The stability was tested by decreasing the 
step sizes, and accuracy to two decimal places 
was guaranteed by using the step sixes 
As = Ay = AZ = 0.2, provided K, > 0.1. 

DISCUSSION OF THE ~~AR~CLE 

CONDUCTION MODEL 

For the Schumann model, at each value of Y 
a uniquely shaped breakthrough (outlet gas 
temperature) curve exists, a few are shown in 
Fig. 4. However for the ~trapa~icle conduction 
model for each value of Y a family of curves 
exists for various values of K, and Fig. 5 shows 
a range of these. As mentioned earlier as K, 
increases the intraparticle model approaches 
the Schumann one, unfortunately no satisfactory 

FIG. 4. Breakthrough curves for the Schumann model. 
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Symbol Value of K, 

+ I.0 
0 0.1 

The continuous line - 
represents K, = 00, i.e. 
The Schumann model 

I I I I 

0 IO 20 30 

I. Dimensionless time 

FIG. 5. Breakthrough curves for the intraparticle conduction model. 

definition has been found which will predict a 
dividing line between the two models. Such a 
definition would be useful because the com- 
puting time required to obtain a solution by the 
intraparticle model is far in excess of that 
required using the Schumann model. 

Saunders and Ford [33] proposed from 
experimental observations that provided the 
value of the dimensionless group, N,, = udC$k,, 

was less than 4 the effect of intraparticle con- 
duction is insignificant, whereas Chukhanov 
and Shapatina [343 showed that the use of 

Schumann’s model is limited to values of the 
inverse of the Biot number, kJh& > l-15. 
These two groups differ by the terms, UC, and 
h,, and it is questionable which of the two groups 
gives the best prediction of the correct model. 

The conduction parameter K, is twice the 
inverse of the Biot number, hence on the basis 
of the Chukhanov and Shapatina prediction, 
using K, = 10, the breakthrough curves for 
the intraparticle and Schumann models should 
coincide. It is evident from Table 4 that this is 
not so, although as the value of Y is increased 

Table 4. Investigation of the Chukhanov and Shapatina prediction for K, = 10 

Y=2 Y=4 Y=8 

F0 Z’ Z e(%) Z Z e( %) Z’ Z e( %I 

0.1 No value 0.817 0.791 -3.1 3,280 3.238 - 1.3 
0.2 0.240 0.221 -7.1 1.543 1.519 -1.2 4.539 4.504 -0.8 
0.3 0.620 0.602 -2.9 2,191 2.170 -0.9 5.569 5.541 -0.5 
0.4 1.024 1m9 -1.4 2.826 2.810 -0.5 6.529 6.510 -0.3 
0.5 1.470 1.458 -0.8 3.488 3.477 -0.3 7.494 7.484 - 0.1 
0.6 1.980 1.974 -0.3 4.218 4.212 -0.1 8.524 8.524 00 
0.7 2.599 2.600 0.0 5.065 5.017 +O.l 9.698 9.710 +O.l 
0.8 3.421 3.430 +0.3 6.155 6.173 +0.3 11.166 11.194 +0.3 
0.9 4.728 4.755 +0.6 7.836 7.875 +0.5 13.369 13.424 + o-4 

Z’ Schumann model ; Z intraparticle model ; e = 100 (Z - Z’)/Z’ ( “/,I. 
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the two curves seem to approach each other. This 
particular prediction concerning the limitation 
on the use of the Schumann model does not 
seem to be valid. 

The dimensionless group N,, proposed by 
Saunders and Ford does not have the flexibility 
of YK, > 60. 

From the consideration of Table 4 values of 
Y were investigated to find those values of K, 
which gave an approximate 1.0 per cent agree- 
ment between the curves for the two models at 
either the 0.2 or 0.8 fractional temperature points. 
In Table 5 the curve points at 0.1 intervals are 
presented for the two models at which the above 

Butterfield [24] has shown that the use of an 
overall coefficient of the type proposed by 
Hausen [35] in the Schumann model equations 
of a reversing regenerator may lead to significant 
errors particularly when the reversing period is 
short. It is therefore important when seeking a 
correct numerical simulation of a reversing 
thermal regenerator that the intra particle con- 

Table 5. Comparison of the Schumann and intraparticle models 

Y=4 K,= 15 Y = 12 K,= 5 Y=20 ’ K,=3 

FO z Z e(%) Z’ Z e(%) Z’ Z e(%) 

0.1 0.817 0.800 -1.7 6.112 6106 - 1.7 12.271 12.034 -1.9 

0.2 1.543 1.519 -0.9 7.773 7.689 -1.1 14.561 14.386 - 1.2 

0.3 2.191 2.177 -0.6 9093 9.029 -0.7 16.333 16210 -0.7 

0.4 2.826 2.815 -0.3 10.301 10.258 -0.4 17.929 17.855 -0.4 
0.5 3.408 3.48 1 -0.2 11.496 11.458 -0.2 19.489 19.464 -0.1 

0.6 4.215 4.213 -0.1 12.757 12.761 0.0 21.114 21.141 +0.1 

0.7 5.065 5.069 +0.1 14.177 14.211 +0.2 22.925 23.012 +0.4 

0.8 6.155 6.168 +0.2 15.933 16005 +05 25.141 25.302 +0.6 
0.9 7.833 7.862 +0.3 18.535 18.667 +0.7 28.385 28.656 + 1.0 

z’ Schumann model ; Z intraparticle model ; e = 100 (Z - Z’)/Z’ %. 

agreement was obtained. The product of Y 
and K, at which the stated agreement occurs is 
60 and thus this value seems to predict a dividing 
line between the two models. Now 

or 

YK, = h,ALk,/M,C,Bh, > 60 (41) 

YK, = 3kJ( 1 - p)/M,C,B2 > 60. (42) 

The above dimensionless group does not 
contain the heat-transfer coefficient, but it does 
contain the bed length and the bed voidage, 
whereas neither of the previously proposed 

groups contained any of the bed properties 
except that they used the interstitial velocity. 
Hence the prediction by equation (42) infers 
that the shorter the bed length, the smaller the 
value of YK, and hence there is a greater 
possibility of intraparticle conduction effects. 

duction test be applied before selecting the 
appropriate mathematical model. 

EXPERIMENTAL TEST OF THE INTRAPARTICLE 

CONDUCTION MODEL 

The experimental apparatus and procedure 
are described elsewhere [lo, 361: To test the 
model it is necessary to show that the experi- 
mental observations and simulating calculations 
have identical breakthrough curves and this 
was attempted over a wide range of conditions, 
two cases of which are presented here. 

The characteristic data for the two fixed beds 
and the operating conditions are shown in 
Table 6. 

The convective heat-transfer coefficients were 
obtained from a correlation presented by the 
authors for results obtained solely for metallic 
spheres [36]. Figures 6 and 7 show the com- 
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Table 6. Characteristic data for the twofixed beds 

Bed no. 1 2 

Bed length, in. 
Bed diameter, in. 
Packing material 
Packing size, in. 
Packing specific gravity. 
Packing specific heat, Btu/lb”F. 
Gas specific heat, Btu/lb”F. 
Bed density, Ib/ft3. 
Bed voidage. % 
Gas mass throughput, lb/b ft’. 
Superficial velocity, ft/sec. 
Convective heat-transfer coefficient 

Btu/hft’ “F. 
Specific surface, ftz/ft3. 
Thermal conductivity of material, 

Btu/hft’ (“F/ft). 

6.12 8.17 
2.74 2.73 

Lead Soda glass 
0.357 0.238 

11.35 2.51 
0.03 0.189 
0.24 0.24 

443.7 99.1 
37 37 

5564 5623 
19.26 19.60 

69.5 83.5 
120 181 

20 0.60 

0.6 6 in bed of 9mm 

Air flowrote 5564 Ib/ft* 
Predicted Y = 326 

0.6 

6 

- Experimental curve 
-o- Schumann model prediction 
-x-- Intraparticle conduction 

model predktion 

I I I I 
0 30 60 

Time, set 

FIG. 6. Breakthrough curve compaiison for run 1. 

parisons and there is excellent agreement between 
the shapes of the curves although they do not 
coincide. This difference between the predicted 
and experimental curves was due to the slight 
tailing of the step input which was not completely 
square. The step increments used in the com- 
putation were AZ = Ay = O-2 and As = 0.1. 

Table 7 shows the comparison between the 
curve points predicted for these runs both for 
the Schumann case and the intraparticle case. 
Very good agreement is obtained for run 1, 
where lead shot were used as the packing, but 
for run 2 the curves differ considerably. The 
value of YK, for run 1 was 66.2 whilst that for 
run 2 was 6.1. Hence for run 2 considerable 

0.6 

F, 

04 -Experimental curve 
- Schumann model prediction 
-+- Introparticle conduction 

model prediction 

0.2 

0 30 60 

Time, set 

FIG. 7. Breakthrough curve comparison for run 2. 

Table I. Curve points predicted by the Schumann and intraparticle conduction models 

Run 1 Run 2 

FO t’ (set) t (set) t’ (set) t (set) 
Y= 3.26, KI = 20.23, YK, = 66.2 Y = 8.25, K, = 0.74, YK, = 6.1 

@l 2.47 2.40 14.22 12.10 
0.2 5.85 5.78 19.52 17.68 
0.3 8.98 8.91 23.85 22.36 
0.4 12.11 12.05 27.87 26.79 
0.5 15.41 15.38 31.94 31.29 
0.6 19.09 19.07 36.22 36.14 
0.7 23.42 23.45 41.13 41.71 
0.8 29.04 29.10 47.25 48.73 
0.9 37.79 37.90 56.45 59.36 

t’ Schumann model 
t intraparticle model 



intraparticle conduction effects are present, 
whilst run 1 is free of them. 
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and 

T, = T,i for t = 0 and L 2 12 0. (46) 

Additional boundary conditions must be 
considered to solve (44) at the extremities of 
the beds and two types of conditions may be 
assumed. 

The intraparticle conduction model fits the 
ex~~mental one extremely well, which indi- 
cates that the breakthrough curve for beds where 
intraparticle conduction effects are present, 
may be predicted accurately using this model. 
It is important however to check firstly that 
intraparticle effects will be encountered, because 
otherwise the Schumann model may be used for 
the prediction thus saving considerable com- 
puting time. The excellent predictions obtained 
here infer that the heat-transfer coefficients 
used were in fact the convective ones. Hence 
the results presented earlier for metallic spheres 
were free of the effects of intraparticle conduction, 
whilst the results for the non-metallic spheres 
were affected under certain llow conditions. 

1. Adiabatic boundary conditions 

aT,iar = 0 at 1= 0 and I = L 

for t > 0. (47) 

2. Flux boundary conditions, 

- k~aT~a1 = k,(T - T,) at t=O 

and 

I= L for t > 0. (48) 

Equations (3) and (44) through (48) are made 
dimensionless by transforming the independent 
variables 1 and t by the substitutions, 

z = (t - t/u) h,A/M,C, (10) 

y = l/L (49) 

Y = h,AL,‘M,C, (50) 

K, = k~~M~C~ (51) 

and 

K, = kJh,L, (52) 

and the introduction of the normalized tem- 
peratures 

THE EFFECT OF AXiAL CONDUCTION IN 
THE SOLID 

If the packing is not particulate, but in the 
form of material parallel to the fluid flow, 
assumption (d) for the Schumann model will 
only be partially valid, because there may be 
axial conduction of heat in the solid phase. 
The packing is now assumed to be continuous 
lengths L equal to that of the packed bed and 
heat balance equations may again be formulated. 
The one for the fluid phase is unchanged, i.e. 

M,c,a7p + (M,CJU) a7yat 

=t - h,A(q - XI-,) (43) 

whilst the one for the solid phase is 

M,C,dT$& = h,A(T, - i’J + k,A,d2TJa12. 

(44) 

and 

J’g = (T, - TsJ/‘(~i - U (14) 

J’s = (T, - T,J/(qi - T,,)* 

Hence the equations 

(1% 

The initial and boundary conditions which 
again represent a step change in the gas inlet 
temperature are 

aFg/ay = - Y(F, - F,) (53) 

aFdaz = (F, - F,) + (KJY)~~F~~Y~ (54) 

with the following initial and boundary con- 
for I = 0 and t 2 0 (45) ditions, 
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F, = 1 for y = 0 and z > 0, (55) 

F, = 0 for z = 0 and 1 By 2 0 (56) 

and 

1. Adiabatic boundary conditions, 

aF,/ay = 0 for y = 0 and y = 1, 

and z 3 0, (57) 

2. Flux boundary conditions, 

-K,aF,/ay = h&F, - F,) for y=O 

and y=l, and ~20, (58) 

describe the axial conduction model. 

where X = $K,Az/Y(AY)~. Now at the ex- 
tremities of the bed, i = 0 and i = N, it is found 
that equation (60) includes fictitious tempera- 
tures outside the grid at the positions i = - 1 
and i = N + 1. Either of the boundary con- 
ditions (57) and (58) may be used to eliminate 
these temperatures. 

The adiabatic boundary (57) is interpreted in 
finite difference form by assuming the existence 
of a temperature point a distance equal to a 
length step Ay outside the grid at which 
I?,[ -11 = F,[O], hence at i = 0 equation (60) 
becomes 

F,[n + JO] - F,[n, 0] 

NUMERICAL SOLUTION OF THE AXIAL 
CONDUCTION MODEL 

The packed bed is now represented by a grid 
as shown in Fig. 8. Equation (53) is approximated 
by central differences representation to give 

F,[n, i + l] - F,[n, i] 

AY 
= - iY(F [n i + l] + F [n i] 

- F,[n, i +” 1; - F&n, i],B+ b(Ay2). (59) 

= &(F [n + i 01 + F [ B 4 01 
- Fs[n f l,O] L F&I, 0-j) + X(F,[n + 1, l] 

- F,[h + l,O] + F,[n, 11 - F,[n, 01) (61) 

and similarly at i = N the assumption is that 
F&V + l] = F&V] resulting in equation (60) 
becoming 

Fs[n + 1, IV] - F,[n, N] = + +Az(F,[n + 1, N-J 

+ F,[n, N] - Fs[n + 1, N] - F,[n, N]) 

+ X(F,[n + 1, N - l] - F,[n + 1, IV] 

+ F&I, N - l] - Fs[n, IV]). 

The equations (60), (61) and (62) form 
of (N + 1) algebraic equations, but 
2(N + 1) - 1 unknowas, that is F,[n 

(62) 
a set 
with 

+ 1, 

Z 

n=l 

i = 1 + N] and FJn + 1, i = 0 + N] provided 
the gas and solid temperatures are known at the 
n time step, hence these equations cannot be 
solved as they stand. 

n=O 

i=o i=l i=N 
Y 

Now replacing n by n + 1 in equation (59), 
rearranging and putting i = 0 we obtain 

F,[n + 1, 11 
FIG. 8. Numerical grid representation. = e +f(F,[n + 1, l] + F,[n + l,O]) (63) 

The Crank-Nicholson representation of equa- 
tion (54) is 

F,[n + 1, i] - F,[n, i] = + iAz(F,[n + 1, i] + F,[n, i] - Fs[n + 1, i] - F,[n, i]) 

+ x Fs[n + 1, i - l] - 2F,[n + 1, i] + Fs[n + 1, i + l] 

I + F,[n, i - l] - 2F,[n, i] + F,[n, i + l] 
+ o(Ay2) + o(Az) (60) 
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where 

and 

e = (2 - YAy)/(2 + YAy) (64) 

f = YAy@ + YAy), (65) 

and the unknown gas temperature at i = 1 is 
represented by the unknown solid tem~atures 
at i = 0 and i = 1. For i = 1, equation (59) 
becomes 

F& + 192-J 

= eF&I + 1,l) +f(F,[n + 1,2] 

+ F,Cn + 411) (66) 

and substitution of equation (63) in (66) gives 

F,[n + 1,2] = e2 +f(F,[n + 1,2] 

+ (e + l)F,[n + 1, l] + eFJn + l,O]) (67) 

where the unknown gas tem~rature at i = 2 
is now represented by the unknown solid 
temperatures at i = 0, 1 and 2. 

Hence for the (n + 1) time step the gas tem- 
peratures can be found in terms of the solid 
temperatures and for i = N, the gas temperature 
is given by 

F&n + 1, N] = eN + eN-‘fFs[n + 1,0] 

+ e”-‘f(e + l)F,[n + I, l] 

f eNm3f(e f 1) F,[n + 1,2] + . . . 

+ ef(e + 1) F,[n + 1, N - 2] 

+f(e + l)F,[n + 1,N - l] 

+ fF,[n + 1, N]. (68) 

The equations of the type (63), (67) and (68) 
may be substituted into equations (60), (61) 
and (62) to give a set of (IV -I- 1) algebraic equa- 
tions of (N + I) unknown solid temperatures, 
F,[n + 1, i = 0 -+ N], which will be represented 
by &(n + 1) = &I), where c is a (N + 1) x 
(IV -i- 1) &i-diagonal matrix superimposed upon 
a (N + 1) x (N + 1) lower triangular matrix, 
Z(n + 1) is a (N + 1) column vector of the 
unknowns and b(n) is a (N + 1) column vector 
of the knowns. The values of unknowns in x 
are obtained by the inversion Z(n + 1) = 

D(n) c-l, this was achieved by a special back 
elimination and forward substitution procedure 
(10). The components of c, X(n + 1) and D(n) 
may be found in Appendix 2. 

The flux boundary condition (58) is approxi- 
mated by backward difference at i = 0 to give 

_ K (&CO1 - %- 11) 
f 

AY 

= (F, - FsCOl> + WY) (69) 

and by forward difference at i = N to give 

+ K (F,P’ + 11 - FsWl) 
/ 

AY 

= (F, - F,WI) + NAY)- (70) 

Equations (69) and (70) are used to eliminate 
the fictitious temperatures F,[ - 11 and 
F,[N + l] obtained in equation (60) for i = 0 
and i = N. The equations of the type (63), (67) 
and (68) may now be used to eliminate the gas 
temperatures at the (n + 1) time step and the 
resulting set of (N -I- 1) algebraic equations with 
(N + 1) unknown solid temperatures, re- 
presented for convenience by pZ(n + 1) = D(n), 
are solved in the identical manner as for the 
adiabatic boundary condition case. The com- 
ponents of c and 1-T’(n) may also be found in 
Appendix 2. 

In both cases the values of Fg at the (n + 1) 
time step are derived from equation (59) a&r 
the values of F, at that time step have been 
evaluated. The numerical analysis is initiated 
by use of the initial and boundary conditions 
(55) and (56), which in finite-different form are, 

F,[n, i] = 1 for i = 0 and n > 0 (71) 

and 

FJn, i] = 0 for n = 0 and IV 2 i > 0. 

(72) 

Equations (72) and (59) combine to enable the 
values of F, to be evaluated at the zero time 
condition by the following equation, 

F,[O, i + l] = eF,[O, i]. (73) 

C 
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STABILITY AND CONVERGENCE OF THE 
NUMERICAL SOLUTION OF THE AXIAL 

CONDUCTION MODEL 

No analytical solution was found for this 
model in the literature, although Creswick [37] 
has derived an explicit finite-difference solution 
for the case of adiabatic boundaries. His 
solution however contains a severe stability 
criterion. 

AZ < Y(AJJ)~/(~K, + Ye) (74) 

which tends to prohibit its use, and it also appears 
to contain a misrepresentation in the numerical 
analysis. In his analysis he eliminates the licti- 
tious temperatures outside the grid in the 
identical manner, as was reported for equations 
(61) and (62). He then continues to represent 
the expression a2FJay2 at the next length step 
i = 1, by (subscripts refer to values of i) 

(a2F,/ay2), = ((AF,/Ay), - (@~/AY)o)PY (75) 

and states that 

(AFJAY), = 0, and 

(AF,/Ay)z = EC31 - WIPY 

resulting in the following, 

(aWay% = m31 - ~,[11)/4(48 (76) 

This representation of (d2Fs/ay2)1, and 
(AFJAy), is by central-difference approximation, 
and representation of (AFJAy), in this manner 
gives (F,[l] - F,[ - 1])/2Ay, which by the earlier 
assumption cannot be zero. This assumption 
of (AF$AY)~ = 0 implies thermal symmetry 
at the boundary and physically this is not so. 
This misrepresentation is applied at the last 
but one grid point. The representation of 
(a2F,/ay2), would be expected to be 

(F,[Ol - 2KCIl + F,PIY~(AY)~, (77) 

which does not alter the stability criterion, 
The stability and convergence were checked 

by decreasing the values of AZ and Ay, and the 
solution was found to be more sensitive to the 
values of AZ. To ensure convergence to two 
places of decimals the value of AZ was 0.1 

whilst that for By was 0.05, except for Y values 
less than 5 when 01 was sufficient. 

The solution was checked to converge to the 
correct values by comparison with the Schumann 
case for decreasing values of K,, when the axial 
conduction model approached the Schumann 
one. Table 8 shows this comparison and it is 
apparent that the Schumann model is 
approached as K, is decreased. 

For the flux boundary conditions, the stability 
was ensured provided AZ < 0.01. This difference 
in the stability of the two solutions is caused by 
the mismatching of the truncation errors in 
equations (69) and (70) with those in (60). For 
large values of K, the flux boundary case 
approaches the adiabatic one, and this was 
found to be true for K, > 10 with Y = 2. 

DISCUSSION OF THE AXIAL CONDUCTION 
MODEL 

For the adiabatic boundary case, a family of 
curves for various values of K, exists for each 
value of Y, as shown in Fig. 9, whereas for the 
flux boundary case, a family of curves for various 
values of K, exists for each combination of 
Y and Kp 

No relationship that would predict a dividing 
line between the Schumann model and the 
axial conduction one has been proposed [7,8], 
although for values of Y greater than 4, the 
product of YKL being less than 0.1 seems to 
infer that the Schumann model has been reached. 
This relationship was obtained by a parametric 
investigation of the adiabatic boundary case 
and Table 9 shows the comparison between the 
Schumann and axial conduction models. Now 

YK, = hdAK,As/(M,C,)2 < 0.1 (78) 

and this dimensionless group contains the 
heat transfer coefficient but not the bed length. 
For Y values less than 4 the YKL values pre- 
dicting the dividing line increase in an irregular 
manner such that for Y = 1 there is good 
agreement between the models at YK, = 10. 

Table 10 presents a comparison between the 
Creswick and the adiabatic boundary case 
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Table 8. Convergence checkfor the axial conduction model with adiabatic boundaries 

FO z 
K, = 0.0 

2 

Y=2 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.240 0.242 
0.620 0.621 
1.024 1.025 
1.470 1.469 
1.980 1.980 
2.599 2.598 
3.420 3.418 
4.728 4,276 

Y=8 0.1 3.280 3.288 
0.2 4.539 4.542 
0.3 5.569 5.568 
0.4 6.529 6.526 
0.5 7.494 7489 
0.6 8.524 8.518 
0.7 9.698 9691 
0.8 11.166 11.160 
0.9 13.369 13.368 

Y = 16 0.1 9.132 9.160 
0.2 11.133 11.135 
0.3 12.694 12.684 
0.4 14.109 14.089 
0.5 15.498 15.473 
0.6 16.951 16.924 
0.7 18.577 18.552 
0.8 20.575 20.557 
0.9 23.513 23.517 

OGX 0.01 
Z Z 

0.1 
Z 

No value 
0.242 
0.621 
1.024 
1.469 
1.978 
2.597 
3.417 
4.726 

3.28 1 
4.533 
5.558 
6516 
7.480 
8.511 
9.688 

11.163 
13.385 

9.128 
11.103 
12.654 
14.064 
15.453 
16.913 
18.553 
20.577 
23.573 

0.242 
0.619 
1.020 
1.462 
1.969 
2.586 
3.407 
4.726 

3.221 
4.455 
5.474 
6.432 
7403 
8.450 
9.656 

11.184 
13.524 

8.856 
10.827 
12.396 
13.840 
15.280 
16.810 
18.551 
20.733 
24.028 

0.238 
0.60 1 
0.984 
1.408 
1.901 
2.511 
3.344 
4.733 

2.770 
3.884 
4.855 
5.816 
6839 
7.997 
9402 

11.286 
14.380 

7.010 
8.928 

10.587 
12.222 
13.933 
15.903 
18.258 
21.403 
26538 

Z’ corresponds to the Schumann model. 

The continuous line 
represents /G=O, i.e. the 
Schumann model 

I I I 

0 IO 20 30 
I , Dimensionless time 

FIG. 9. Breakthrough curves for the longitudinal conduction model with adiabatic boundary 
conditions. 
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Table 9. Comparison of the Schumann and axial conduction models 

F, 

Y=4 K, = 0.05 Y = 10 K, = 0.01 Y = 40 K, = 0.0025 

Z Z e(%) Z’ Z e(%) Z Z e ( %) 

0.1 0.826 0.810 -1.9 4.678 
@2 1.548 1.511 -2.4 6140 
0.3 2.192 2.138 -2.5 7.317 
0.4 2.825 2.758 -2.4 8.403 
0.5 3.484 3.410 -2.1 9.487 
06 4.209 4.135 -1.8 1@636 
0.7 5.058 4.996 - 1.2 11.939 
0.8 6.148 6,122 -0.4 13.561 
0.9 7.832 7,908 fl.0 15.981 

4,564 - 2.4 29.050 28.635 
6.007 -2.2 32.345 32.000 
7.179 -1.9 34.872 34.597 
8.273 - 1.6 37.134 36.933 
9.374 - 1.2 39.336 39.218 

10.554 -0.8 41.623 41.603 
11.907 -0.2 44,165 44.268 
13.614 +0.4 47.269 47.540 
16.215 +2,1 51.805 52.361 

Z’ Schumann model ; Z longitudinal model; e = 100 (Z - Z’)/Z’ %. 

- 1.4 
- 1.1 
-0.8 
-0.5 
-0.3 

0.0 
+0,2 
+ 0.6 
+ 0.9 

Table 10. Comparison of Creswick’s solution 

Y K, AZ 
F,= 

AY 

Creswick 
0.1 0.2 0.5 0.8 0.9 
Z Z 2 Z Z 

8 0.1 0004 0.01 
8 1.0 0.010 0.05 

16 0.1 0.03 1 0.02 
16 1.0 DO19 0.05 

2.773 3.897 6.902 11.450 14.629 
1.588 2.519 5.450 12.566 14.575 
7.091 9.056 14.244 21.949 27.290 
3.669 5609 12.851 26.885 37.484 

This work 
8 0.1 0.10 0.05 2.770 3.884 6.839 11,286 14.380 
8 1.0 0.10 0.05 1.527 2.380 5.438 11.312 15.755 

16 0.1 010 0.05 7.010 8.927 13.953 21.403 26.538 
16 1.0 0.10 0.05 3.206 4.739 10.162 20.522 28.357 

solutions. The Creswick solution predicts much 
shallower curves and the difference between the 
solutions becomes greater as K, increases. 
The Crank-Nicholson implicit scheme employs 
much larger time steps than the explicit scheme 
and saves a considerable amount of computing 
time. 

It is interesting to note that the simple criteria 
used by Tipler [38] to test for the importance of 
axial conduction in the solid is equivalent to 
KL and therefore 

Kt = 
Axial heat flux in the solid 

Heat flux from fluid to solid over total bed. 

The criteria for axial conduction defined here 
differs from the above in that it is calculated on 
the basis of a single transfer unit and is therefore 

independent of bed length. 

YK, = 
Axial heat flux in solid 

Heat flux from fluid to solid per unit 
dimensionless bed length. 

Hlinka and Landau [39] have also considered 
the effects of longitudinal conduction in the 
tube wall on the performance and temperature 
distribution in a steady state counterflow heat 
exchanger, however their analytical treatment is 
applicable only to the case of reversing thermal 
regenerators operating at short cycle times. 

EXPERZMENTAL TEST OF THE 

AXIAL CONDUCTION MODEL 

The apparatus and experimental procedure 
are described elsewhere [36] and the packings 



THERMAL CONDUCTIVITY ON 

employed consisted of d in. thick ~~iniurn 
plate sets of various lengths and spacings. 
Hence the packing material was not continuous 
along the bed length thus the physical situation 
is not analogous to the theoretical model 
presented here. The physical model was simu- 
lated theoretically by considering each plate 
set to be a separate bed and the overall test bed a 
series of these separate beds. The zero length 
conditions for the sets after the first one is that 
the FB at the entrance to the set is taken as the 
exit tem~rature from the previous set. 

The cham~teristic data and operating con- 
ditions for two tixed beds are shown in Table 11. 
The heat-transfer coefficients were obtained 
from measurements taken by the authors [36], 
where the Schumann model was assumed to fit 
the physical model. 
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model is free of the effects of axial condu~ion in 
the packing and thus the heat transfer coefficients 
reported earlier were the convective ones. For 
these physical conditions the Schumann model 
may be employed to predict the breakthrough 
curves hence saving computing time. 

Figure 10 for run 3 also shows the predicted 
curve for the model which allows for a con- 
tinuous packing material. The disagreement 
between the curve shapes indicates that this 
model is invalid for this bed a~angement. The 
values of Y are less than 4, and so the equation 
(78) cannot be applied to the ex~rimental 
conditions to predict the effect of longitudinal 
conduction. 

CONCLUSIONS 

1. The model for the transient transfer of heat 

Table 11. Characteristic data for the twofixed beds 

Bed no. 
Bed Length in. 
Bed Diameter in. 
Packing material. 
Materiaf thickness, in. 
Plate spacing, in. 
Plate length, in. 
Packing specific gravity. 
Packinn suecific heat. Btuilb”F. 
Gas s&&c heat, B&/lb%. 
Bed density, Ib/ft3. 
Bed voidage, %. 
Packing characteristic dimension. in. 
Gas mass throughout, lb/hft2. 
Superficial velocity, ft/s. 
Convective heat-transfer coefficient. Btu/hft2”F. 

I , 

Specific surface, ft2/ft3. 
Thermal conductivity of the material, 

Btu~ftz~F/ft). 
--.- 

The comparisons between the recorded obser- 
vations and the simulated values are shown in 
Figs. 10 and 11, excellent agreement being 
obtained. The step increments used in the 
computation were AZ = 01 and Ay = 0.05, 
Table 12 shows the comparison between the 
curve points predicted for these runs both for 
the Schumann case and the axial conduction 
case, The good agreement infers that the physical 

3 4 
8.12 8.13 
2.74 2.72 

AI~inium ~uminium 
1 

b4 
2 
285 
0.22 
0.24 

96.6 
46 

0.42 
1680 
584 

155 
94 

127 127 

Q 
0.052 

2.80 
0.22 
0.24 

120.3 
31 
0.39 

5667 
19.70 
59.2 

121 

in a packed bed of spheres with allowance for 
intraparticle conduction effects is solved 
numerically by applying the Crank-Nicholson 
approximation to the partial differential equa- 
tions. This solution is shown to converge to the 
correct solution by comparison with the analyti- 
cal solution derived by Rosen and with the 
Schumann model. 

2. A parametric inv~tigation of the model 



566 D. HANDLEY and P. J. HEGGS 

I.01 
Run 3 8 in bed of 2 in ton9 plates 

- spaced 0~104” 
Ai; flowrote 1680 lb/h ft2 

0.6- Predicted Ys2.39 

0.6 - 

- Experimental curve 

-O- Longitudinal model with 
discontinuous packing material 

-+- Longitudinal model with 
continuous packing moterial 

4 I I I I I 1 I I 

30 60 90 120 

Time, set 

FIG. 10. Breakthrough curve comparison for run 3. 

0 

revealed a dimensionless group which predicts 
the dividing line between the Schumann and 
intra-particle conduction models. This group 
is independent of the convective heat-transfer 
coefficient, but includes the bed length and void- 
age. The group is shown to be superior to those 
predicted by Saunders and Ford, and by Chuk- 
anov and Shapatina. 

3. The model predicts breakthrough curves 
that agree extremely well with experimental 
observations, whether intraparticle conduction 
effects are present or not. 

4. The heat-transfer coefficient correlation 
presented elsewhere [36] by the authors for 
results obtained from beds of metallic spheres 
are confirmed by this study to be free of the 

I.0 [r Run 8 in bed of I in long plotes 

- Spaced 0.052” 
_ Air flawrate 5667 lb/h A’ 

0.6 - Predicted Y-3.74 

0.6 - 

r 
‘g -X- Schumann 

0.4 v Longitudinal model with 
discontinuous packing moterial 

Y 1 I I I I I 
0 30 60 90 120 I50 I80 

Time, set 

FIG. 11. Breakthrough curve comparison for run 4. 
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Table 12. Predicted curve pointsfir the runs by both the Schumann 
and axial models 

Run 3 Run 4 

Fo Time’ (set) Time (set) Time’ (set) Time (set) 

0.1 2.39 2.06 8.79 8.62 
0.2 26.04 25.17 17.63 17.34 
0.3 49.45 48.19 25.60 25.25 
0.4 73.85 72.32 33.47 33.08 
0.5 100.23 98.63 41.70 41.31 
0.6 130.08 128.60 50.79 5040 
0.7 166.12 164.80 6144 61.09 
0.8 213.26 212.59 75.13 74.88 
0.9 287.77 288.64 9631 96.29 

Y = 2.39 Y, = 0.60 KLB = 4.08 Y = 3.74 Ys = 0.47 K, = 6.08. 
Time’ : Schumann model. Time : Axial conduction model. 
Y: Bed length parameter. Y, and K, refer to the individual beds 
within the overall bed 

effects of intraparticle conduction and are there- 
fore convective coefficients. 

5. The model for the transient transfer of heat 
in a bed of parallel plates with allowance for 
axial conduction effects in the packing material 
is solved numerically employing Crank- 
Nicholson approximations. Adiabatic and flux 
boundary conditions are assumed. 

6. The solution for adiabatic boundaries 
predicts different results to those obtained by 
Creswick’s solution which appears to contain a 
misrepresentation. 

7. A parametric investigation revealed a 
dimensionless group which predicts a dividing 
line between the Schumann model and the axial 
conduction model for Y values greater than 4. 

8. The model predicts breakthrough curves 
which agree well with experimental observations, 
inferring that the heat-transfer coefficients re- 
corded previously were free of axial conduction 
effects. 
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APPENDIX 1 

Components of equations, &(n + 1) = &I) which represent the set of simultaneous algebraic 
equations for the intra-particle conduction case at each length step. 

A= 2+Ay 

I 

-AY 
-Mu 1 -t- M(l + u) -M 

,Mv,_, 
---_ 

1 + M-_.__ -MY-I 
----___ --._ ---___ 

-----__.__ ___3;------__&-;& 

a(n + 1) = -F&n + 1, i] 
F[n + 1, i, k] 
F[n + 1, i, k - 

F[n + t, i, k - 

LF[n + i, i, 0] 

11 

1 

21 
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where 

and 

44 

I 
(2-a)F,[nf l,i- l]+aF,[n+ l,i- l] 

MuFJn, i] + (1 - M + Mu) F[n, i, k) + MF[n, i, k - 1] 
MD~-~F[FZ, i, k] + (1 - M)F[g i, k - l] + My_,fn, i, k - 21 

3MF[n, i, l] ‘f (1 - 3M) F[n, i, 0] 
! 

u = As(1 + l/k) K, 

M = K&/3Asz 

I.+ = (1 + l/k)/2, 

w, = (1 - l/%)/2. 

APPENDIX 2 

Components of the simultaneous algebraic equations, CZ(n + 1) = b(n), which represent the 
longitudinal conduction case with adiabatic boundaries at each time step. 

c= l+X+sAz -X 
r 

I-H+X -x 

-ho + x l-I!z+2x -x 

-hr -ho + X 
I 

I,- H + 2x 
I / 
t I 

-h;_2 -h;-3 

.T(n + 1) = 

I 
I 
I 

h-4 

B(n) = 

where 

-X 
I 
I 

'-h,+X l-H+X . . . 

AZ + (1 + X - #I) F,[n, 0] f XF,[n, l] 

*Az(e + FJn, 1 J) -t (1 - $Az - 2X) F,Cn, 11 + X(FZn, 21 + Un, 01) 
_tdz(e2 + FJn, 21) + (1 - *AZ - 2X) FJn, 23 + X(F$n, 33 + F&n, 11) 

I 
I 

$Az(e* + F [n IV]) + 1 B ’ _! $Az - X) F,[n, N] + XF,[n, N - l] 

e = (2 - YAy)/(2 f YAy), 

S = YAy/‘(2 + YAy), 
x =&Az~AY~, 
- LAzeif i-2 

$ = iAzeif(e + 1) 
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and 

H = ;Az(f- 1). 

For the flux boundaries case, the equations I?‘?@ + 1) = D’(n) differ only in the first and last rows, 
so that 

CT= l+Tgl+a/K/) -x 

I I 

/ 
I 
I 

1 -gNll -A&... -h,+X l-H+X(l-a&). 

1 

R6sumLLes Equations math&matiques d&rivant le transport de chaleur transitoire entre le fluide 
s’tcoulant 11 travers un lit !ixe et ce lit sont form&s pour les situations oti il y a une rtsistance au transport 
de chaleur dans la phase solide et une conduction thermique ii l’inttrieur de la phase solide dans la direction 
de 1’6coulement du fluide. 

On presente une analyse num&ique pour une solution par calculateur de ces Equations et une rechercbe 
param&ique des modhles est employ&. pour montrer que les valeurs de certains groups sans dimensions 
apparaissant B partir de la formulation mathtmatique peuvent &e utilis& pour dbfinir la gamme des 
conditions sous lesquelles les m6canismes de transport de chaleur altematif sont importants. Les observa- 
tions exp&imentales des profils de temp&rature de sortie en fonction du temps qui suivent un changement 
par 6chelon de la temperature du fluide d’entr6e ont 6tk cornpart% avec les protils pr&iits thtoriquement 
afm de v&tier la validitt des modhles mathtmatiques Les valeurs critiques des groupes sans dimensions 

dkfinissant la gamme limite d’applicabilitk des diffkrents mod&s sont prbsent6e.s. 

Zusammenfassung-Die mathematischen Beziehungen, welche den instationlren WBrmeiibergang zwischen 
dem durch ein Festbett strcmenden Medium und dem Packungsmaterial des Festbetts beschreiben, 
werden angegeben fiir den Fall (l), dass innerhalb der festen Phase kein WLrmetransport zugelassen wird 
und fiir den Fall (2), dass WIrmeleitung in der festen Phase in StrCmungsrichtung angenommen wird. 

Eine numerische Analyse fiir die Liisung der Gleichungen auf einer Rechenanlage wird angegeben. Die 
Untersuchung der einzelnen Parameter der Modelle zeigte, dass die Werte verschiedener dimensionsloser 
Kenngriissen, die sich aus der mathematischen Formulierung ergeben, dazu verwendet werden kiinnen, 
den Bereich von Bedingungen festzulegen, unter denen die beiden oben angegebenen Arten des WBme- 
austausches von Bedeutung sind. 

Experimentelle Untersuchungen der Zeit- Temperatur-Durchbruchprofile in Abhtingigkeit von einer 
schrittweisen iclderung der Eintrittstemperatur des StrBmungsmediums wurden mit den theoretisch 
vorausberechneten Profilen verglichen, um die Giiltigkeit der mathematischen Modelle nachzupriifen. 
Die kritschen Werte der dimensionslosen KenngrBssen, welche die Grenzbereiche der Anwendbarkeit 

der verschiedenen Modelle festlegen, werden angegebcn. 

hOTaqHa_MaTeMaTEisecHHe ypamieHMH, onacnaaro~e HecTaqHoHapHnt nepeHoc Tenna 
Wi~KOCTbI0, npoTeKamwe& qepea KenofiBKmHblt cnofi KacanKK, c#opmymiposaHar nnfl 
cnyqaea, Horna (1) cyaecmyeT ConpoTIlsneHHe nepeHocy Terma B npeaenax TsepZ[oB +a3bI st 
(2) BTBepA0i-i @43e ElMeeT MeCTO TelVIOIIpOBO~HOCTb B HaIIpaBJIeHHH ABIlmeHIfR ?KHAKOCTK. 

npeACTaBJIeH WcneHHbIn aHam AJIH peUIeHHH aTIlX ypaBHemll Ha MaImiHe, II napa- 

MeTpU'4eCKOe ElCCJleAOBaKMe MOAeJlet IlpHMeHReTCR AJlH TOrO,YT06bl llOKa3aTb,9TO 3HaYeHklR 

onpe~eneHHnx6eapaa~epHarxrpynn,BoaHKKaH)~KxnpKMaTeMaTIlsecKoZto6pa6oTKe,~ory~ 

UCIIOJlb3OBaTbCFI AJIEI 0npeAeneHm gKana3oHa yCJlOBUlt, npn ~0~0pblX Bamm npynie 

MexaHnardbI nepeHoca Tema. PeaynbTam 3KcnepmeHTanbKbIx Ha6JIloAeHIli aa IIpO@iJIJ?MK 

TemepaTypu, KaK @yHKl(HEI BpeMeHH, nocne cTynemaTor0 KaMeKeHm TemnepaTy$bl 

WMAKOCTH Ha BXOAe, CpaBHHBaJlHCb C TeOpeTM~eCKHMH IIpO@lJIfiMK AJIII npOBepKH CIIpaBe- 

AJIKBOCTK MaTeMaTmecKKx Moneneti. IIpeAcTaBneHH KpaTmecKae aHa9eKm 6eapaaMepHnx 

rpynn, 0npeAenfilowux AHanaaoH npnnreHnnrocTH pa3miYHbIx Mogeneltt. 


